OG/SS ORIGINAL (Red)

R-51-5-2-15

FINAL SCREENING SITE INSPECTION

LINFIELD INDUSTRIAL PARK

PROJECT NO. 3263-09
EPA DSN PA-2898
FACILITY ID NO. PAD987332814

ARCS III PROGRAM
EPA CONTRACT NO. 68-W8-0037

SEPTEMBER 1992

R-51-5-2-15

FINAL SCREENING SITE INSPECTION

LINFIELD INDUSTRIAL PARK

PROJECT NO. 3263-09
EPA DSN PA-2898
FACILITY ID NO. PAD987332814

HALLIBURTON NUS ENVIRONMENTAL CORPORATION ARCS III PROGRAM EPA CONTRACT NO. 68-W8-0037

FOR THE UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

SEPTEMBER 9, 1992

SUBMITTED BY

REVIEWED BY

Site Name:

<u>Linfield Industrial Park</u> 3263-09

Project No.: 3263-09

ORIGINAL (Red)

TABLE OF CONTENTS

SECT	<u> 10N</u>		PAGE
1.0	INTRODU	ICTION	. 1-1
	1.1	AUTHORIZATION	
	1.2	SCOPE OF WORK	1-1
	1.3	SUMMARY	1-1
2.0	THE SITE		. 2-1
	2.1	LOCATION	2-1
	2.2	SITE LAYOUT	2-1
	2.3	OWNERSHIP HISTORY	2-6
	2.4	SITE USE HISTORY	2-7
	2.5	PERMIT AND REGULATORY ACTION HISTORY	2-8
	2.6	REMEDIAL ACTION TO DATE	2-11
3.0	ENVIRON	MENTAL SETTING	3-1
	3.1	WATER SUPPLY	3-1
	3.2	SURFACE WATERS	3-3
	3.3	HYDROGEOLOGY	3-3
	3.3.1	Geology	3-4
	3.3.2	Soils	3-7
	3.3.3	Groundwater	3-9
	3.4	CLIMATE AND METEOROLOGY	3-12
	3.5	LAND USE	3-12
	3.6	POPULATION DISTRIBUTION	3-12
	3.7	CRITICAL ENVIRONMENTS	3-13
4.0	WASTE T	YPES AND QUANTITIES	4-1
5.0	FIELD TRI	P REPORT	5-1
	5.1	SUMMARY	5-1
	5.2	PERSONS CONTACTED	5-1
	5.2.1	Prior to Field Trip	5-1
	5.2.2	At the Site	5-2
	5.2.3	After Site Visit	5-2
	5.2.4	Water Supply Well Information	5-2
	5.3	SAMPLE LOG	5-3
	5.4	SITE OBSERVATIONS	5- 6
	5.5	PHOTOGRAPH LOG	
	5.6	EPA SITE INSPECTION FORM	
6.0	REFERENC	CES FOR SECTIONS 1 0 THROUGH 5 0	6-1

Linfield Industrial Park 3263-09

TABLE OF CONTENTS (continued)

<u>SECT</u>	TON		PAGE	
7.0	LABORATORY DATA			
	7.1	SAMPLE DATA SUMMARY	. 7-1	
	7.2	ORGANIC DATA VALIDATION: CASE 17641	. 7-2	
	7.2.1	Overview	. 7-2	
	7.2.2	Summary	7-2	
	7.2.3	Major Issues	. 7-2	
	7.2.4	Minor Issues	. 7-5	
	7.2.5	Notes	. 7-7	
	7.3	INORGANIC DATA VALIDATION REPORT: CASE NUMBER 17641	7-9	
	7.3.1	Overview	. 7-9	
	7.3.2	Summary	. 7-9	
	7.3.3	Major Issues	. 7-9	
	7.3.4	Minor Issues	7-10	
	7.3.5	Notes	7-11	
8.0	TOXICOL	OGICAL EVALUATION	. 8-1	
	8.1	SUMMARY	8-1	
	8.2	SUPPORT DATA	. 8-2	
	8.2.1	Organics	. 8-2	
	8.2.2	Inorganics	. 8-5	
APPE	NDICES			
A	QUALITY	ASSURANCE SUPPORT DOCUMENTATION	A-1	
В	LABORA	TORY DATA	. В-1	
С	HOME W	/ELL SURVEYS	. C -1	

PLATES

FOUR-MILE-RADIUS MAP

ORIGINAL (Red)

Site Name: Project No.:

<u>Linfield Industrial Park</u> 3263-09

FIGURES

NUMBER		PAGE
2.1	Site Location Map	2-2
2.2	Site Sketch	2-3
3.1	Geologic Map	3-5
3.2	Soils Map	3-8
5.1	Sample Location Map	5-4
5.2	Off-Site Sample Location Map	5-5
5.3	Photo Location Map	5-7
5.4	Off-Site Photo Location Map	5-8

May May

SECTION 1.0

<u>Linfield Industrial Park</u>

3263-09

ORIGINAL (Red)

1.0 INTRODUCTION

1.1 AUTHORIZATION

HALLIBURTON NUS Environmental Corporation performed this work under EPA Contract No. 68-W8-

0037. This specific report was prepared in accordance with ARCS III Work Assignment No. 37-34-3JZZ

for the Linfield Industrial Park Site, located in Linfield, Montgomery County, Pennsylvania.

1.2 SCOPE OF WORK

HALLIBURTON NUS Environmental Corporation (formerly NUS Corporation) ARCS III was tasked to

conduct a site inspection of the subject site.

1.3 SUMMARY

The Linfield Industrial Park Site is located south of Linfield - Trappe Road, east of the Schuylkill River

bridge, in Montgomery County, Pennsylvania. The residential town of Linfield is adjacent to and

northeast of the site; state game lands are east of and adjacent to the site.

The abandoned 125-acre industrial park is situated on mostly flat land on the eastern banks of the

Schuylkill River. The western and southern portions of the site have a five- to 10-percent slope

toward the Schuylkill River. Access to the site is restricted by a fence and a main gate; however, the

fence does not completely surround the site. The site is composed of approximately six separate

divisions: the main gate and parking area, the distillery area, the building no. 2 area, the warehouse

area, the concrete pads area, and the former tank farm area.

The site has been inactive since 1986. The current owner, 888 Warehousing, Incorporated, is

attempting to find a lessee or buyer for the property.

From an unknown date until 1986, building no. 2 was used for the repackaging and distribution of

ethylene glycol (antifreeze) and ammonia-based cleaners. These materials were transported to the

facility by rail car and tanker trucks, transferred to smaller containers, and distributed off site for sale.

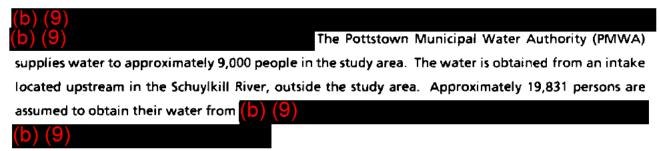
Evidence at the site indicates that one-gallon plastic containers may have been manufactured on site

1-1

for the distribution of the antifreeze and cleaner products.

R-51-5-2-15

Linfield Industrial Park


.: 3263-09

Beginning in approximately 1945, the facility operated as a United-States-Government-bonded whiskey warehousing operation. The storage and distribution of whiskey comprised the main operation. Above-ground storage tanks provided the initial storage. Whiskey was then transferred to wooden kegs for aging in the warehouses. After the aging process, the whiskey was bottled and labeled at the site. It is not known how long this operation existed at the site.

For an undetermined period (probably beginning in the early 1800s), the facility was operated as a distillery of whiskey products. Storage, aging, and distribution of the whiskey products occurred at the site.

Inspections conducted by the Pennsylvania Department of Environmental Resources (PA DER) in 1972, 1973, 1975, 1983, 1984, and 1985 revealed unauthorized discharges of industrial wastewater to the Schuylkill River. The industrial wastewater consisted of deionizer wastewater, septic tank seepage, trash-compactor oils, bottle-making room oils, air compressor pit waste oil, and non-contact cooling compressor water. Additionally, the deionizer wastewater backwash and regeneration wastes were discharged after neutralization into a lime pit. From an unknown date until 1987, the facility was issued two NPDES permits for an outfall to the Schuylkill River. The NPDES discharge point was analyzed by PA DER on March 7, 1985 and revealed elevated levels of biochemical oxygen demand (BOD).

Groundwater and surface water are the sources of potable water for individuals residing in the fourmile-radius area surrounding the Linfield Industrial Park Site. The Citizens' Utilities Home Water Company (CUHWC) supplies water to a total population of 12,506 people in the study area. The water is obtained from an intake in the Schuylkill River (b) (9)

The Schuylkill River is adjacent to the southern and western boundaries of the site. PA DER lists the Schuylkill River as protected for the maintenance and/or propagation of fish species indigenous to warm water and for the passage, maintenance, and propagation of migratory fishes.

Site Name:

<u>Linfield Industrial Park</u>

Project No.: <u>3263-09</u>

ORIGINAL (Red)

Adjacent to and downstream from the site are palustrine, forested, broad-leaved, deciduous, temporarily non-tidal flooded wetlands with three linear miles of frontage.

On February 19, 1991, HALLIBURTON NUS Field Investigation Team 3 (FIT 3) conducted a preliminary assessment of the Linfield Industrial Park. During the inspection, HALLIBURTON NUS FIT 3 observed several areas of concern: 21 above-ground storage tanks, two underground storage tanks that contained unknown oils, 75 to 100 fifty-five-gallon drums (many drums were empty, although at least 25 drums were not empty; 1 tar-like spill was observed), two power transformers, one gas pump, five tanker trucks (at least one truck was still hooked to the building via a discharge line), and 20 abandoned buildings. Based on these observations, EPA Emergency Response was contacted.

EPA Emergency Response performed an emergency assessment of the site on March 14, and 27, 1991. Before the assessment, the site owner informed the on-scene coordinator (OSC) that many of the drums observed by the FIT had been moved into an on-site warehouse. The large on-site holding tanks were found to be empty. Numerous drums and containers were found in the various on-site buildings. Four drums were sampled, and a soil sample was taken near a transformer. The OSC planned to work with the site owner to address safety concerns posed by the unrestricted site access and the materials haphazardly stored on site.

HALLIBURTON NUS ARCS III conducted a screening site inspection on January 30, 1992. Activities included sampling on-site surface soils and surface water and off-site groundwater and surface water. The results of the samplings, as shown in section 7.0 and discussed in section 8.0, revealed elevated levels of organic and inorganic contaminants including fluoranthene (72,000 ppb), benzo(a)pyrene (30,000 ppb), polychlorinated biphenyls (PCBs) (300,000 ppb), and lead (4,810 ppm) in on-site soil and elevated levels of inorganic contaminants including lead (59.90 ppb) and cyanide (11.70 ppb) in off-site surface water.

R-51-5-2-15 1-3

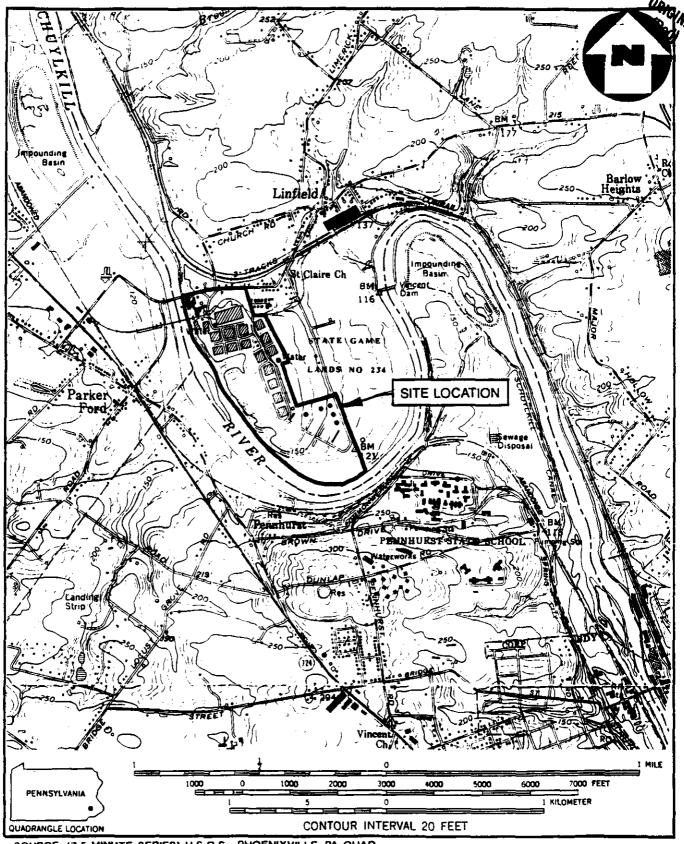
SECTION 2.0

Linfield Industrial Park

3263-09

2.0 THE SITE

2.1 LOCATION


The Linfield Industrial Park Site is located immediately south of the Linfield - Trappe Road and east of the Schuylkill River bridge in Montgomery County, Pennsylvania (see figure 2.1, page 2-2). The site, which is south of Linfield, Pennsylvania, can be found on the United States Geological Survey (U.S.G.S.) Phoenixville, Pennsylvania 7.5 minute series topographic map at the coordinates 40° 12′ 08″ north latitude and 75° 34′ 38″ west longitude. As measured from the southwestern corner of the Phoenixville, Pennsylvania topographic map, the site is approximately 6-3/4 inches east and 14 inches north. 1,2,3

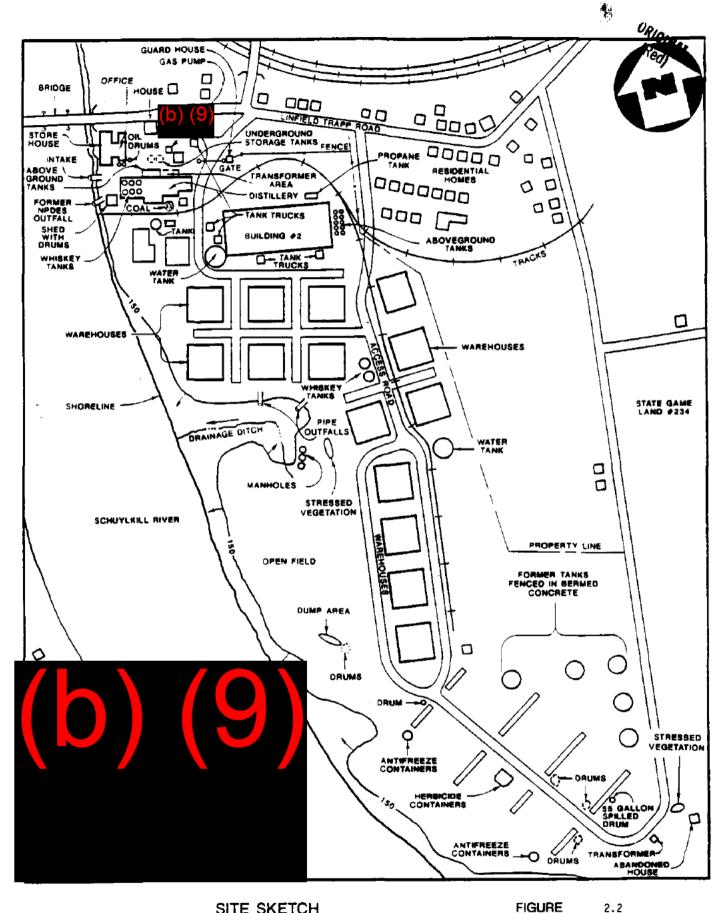
2.2 SITE LAYOUT

The 125-acre industrial park site is located immediately off Linfield - Trappe Road, south of Linfield, Pennsylvania. The site is bordered to the south and west by the Schuylkill River, to the east by State Game Land No. 234, and to the north and northeast by the residential town of Linfield. ConRail Corporation railroad tracks are located in the town of Linfield, north of the site; abandoned tracks are throughout the site (see figure 2.2, page 2-3).²

The site can be divided into six divisions: the fenced parking lot, the distillery area (distillery building, office/storehouse, abandoned house, leachate field, and other buildings), building no. 2 or the ethylene glycol area, the warehouses, the concrete pads, and the former tank farm.²

Located on the northeastern portion of the site is a paved access road that leads from Linfield - Trappe Road to a 200- by 75-foot parking lot on site. A guardhouse was adjacent to the main gate. A chain-link fence separated the parking lot from the facility. An abandoned tanker truck was northwest of the guardhouse at the time of the preliminary assessment.² The guardhouse was not occupied at the time of the site inspection.⁴

SOURCE: (7.5 MINUTE SERIES) U.S.G.S. PHOENIXVILLE, PA QUAD.


SITE LOCATION MAP LINFIELD INDUSTRIAL PARK, LINFIELD, PA.

SCALE 1: 24000

2.1

FIGURE

SITE SKETCH

LINFIELD INDUSTRIAL PARK, LINFIELD, PA.

(NO SCALE)

Linfield Industrial Park

3263-09

Located on the northwestern portion of the site was the two-story former distillery building. At the time of the preliminary assessment, the distillery and the area surrounding it consisted of eight whiskey vats, oil and grease drums, five above-ground storage tanks, an oven and smoke stack with a coal pile, a transformer, and abandoned trucks. The distillery building housed the equipment used in the whiskey manufacturing process, including approximately eight empty (11,700-gallon capacity each) wooden fermentation vats. Adjacent to the distillery building on the northern side were five above-ground metal cylinder storage tanks. Three of these tanks hold approximately 5,284 gallons each; the two remaining tanks hold approximately 939 gallons each. The contents of these tanks are not known. Adjacent to and east of these tanks were an electrical transformer unit, and an area of stained soils was noted. Several 55-gallon drums of oil and grease were observed in this area during the preliminary assessment. On the southern side of the distillery building was a coal pile that was approximately 10 by 15 by six feet in size (150 square feet of ground surface area was covered). A stoker oven, east of the coal pile, had piping and a smoke stack attached to the southern side of the building.²

North of the distillery was an abandoned house. Adjacent to the eastern side of the house was an inactive well, and south of the house was a gas pump.²

An office/storehouse building was located northwest of the distillery. Pipes led to the Schuylkill River from the western side of the building. Two underground storage tanks, approximately 10,000 gallons each, containing oil-like liquids were located east of the building; the underground storage tanks could be accessed through manhole covers. At the time of the preliminary assessment, several 55-gallon drums were located near the southern side of the building; at least two drums were full and marked "Used Oil." At the bottom of the hill, adjacent to the Schuylkill River and west of the building, was a concrete underground open pit that appeared to be a surface water intake. A pump and pipeline system with a broken screen on top were observed.²

South of the office/storehouse and west of the distillery building was a leachate field with vent stacks. A 12- by 12-foot building was located in this area. A small generator with indications of stained soils was observed in this area. Ten 55-gallon drums of oil and varnish were located inside the building. West of the leachate field was the former NPDES outfall. South of the outfall, abandoned railroad tracks crossed over the river.²

South of the distillery building were two buildings and several abandoned trucks. At the time of the preliminary assessment, the eastern building contained personnel lockers and pumping equipment. The contents of the western building are not known. A large above-ground tank, 30 by 50 feet in size, with an approximately 264,231-gallon capacity, was located adjacent to the buildings. The trucks in this area were a New York Fire Department truck and several trailer trucks.²

R-51 5.2 15 2-4

ORIGINAL (Red) Site Name: Project No.: **Linfield Industrial Park**

3263-09

In the north-central portion of the site was building no. 2 or the ethylene glycol area. This building was reportedly used primarily for ethylene glycol bottling and distribution. East of the building were 10 fenced, black, above-ground metal cylinder storage tanks, six by 40 feet in size, with an 8,455-gallon capacity. The contents of these tanks are not known. One white above-ground metal cylinder storage tank, five by 30 feet in size, with an approximately 4,400-gallon capacity, was located on the northeastern side of the building. This white tank contained plastic white pellets. These white pellets were also on the ground around the tank. One brushed aluminum above-ground metal cylinder storage tank, five by 10 feet in size, with a 1,467-gallon capacity, was located here also. A white above-ground propane storage tank was located 200 feet north of the building. A loading dock was on the northern side of building no. 2. Four abandoned tanker trucks were observed adjacent to the building. One truck on the southern side of the building was connected to the building via its discharge pipe. The contents of the tankers are not known. West of building no. 2 was a water tower.²

Located centrally on the site and south of building no. 2 was the warehouse area. The 14 warehouse buildings (three-story and windowless) were formerly used for the storage of whiskey barrels. Two above-ground aluminum cylinder storage tanks, 40 by 50 feet in size, with an approximately 469,244-gallon capacity, and one above-ground metal cylinder tank, eight by 15 feet in size, with a 3,637-gallon capacity, were located centrally among these warehouses. The contents of these tanks are not known. A water tower was located in this area. Pipelines insulated in asbestos-like material (some pipelines had collapsed) connected the warehouses.²

During the site inspection, a trash dump measuring approximately 30 by 75 feet and consisting mostly of empty plastic antifreeze containers was observed between the southernmost warehouse and the Schuylkill River. Adjacent to this area were approximately 60 upright empty and rusted drums. No markings were visible on the drums.⁴

A drainage swale that led to the Schuylkill River was in a low-lying area west of the warehouses in the middle of the site. The swale originated at the outfall of a large concrete pipe. Several smaller pipe outfalls and three concrete-lidded manholes were also in this area. In an open field east of this area was an approximately 20- by 100-foot area of stressed vegetation.⁴

Linfield Industrial Park

3263-09

ORIGINAL REGIS

Located on the southwestern part of the site were eight concrete pads. These 30- by 250-foot concrete roads extended to the east and west from a main north-south-trending on-site road. Demolished wooden buildings were observed at each pad area. At least twenty-two 55-gallon drums contained an unknown liquid at the time of the preliminary assessment. Four drums were near the northwestern pad area, and eight drums were located near the southeastern pad area. One 55-gallon drum contained an oil-like residue, which had spilled and stained the ground. Several dump sites on these pads consisted of antifreeze containers, piles of antifreeze jugs and melted plastics, roofing materials, and miscellaneous wastes. Throughout the area were whiskey bottles and wooden barrels. A 12- by 12-foot building was observed west of the main road and between two concrete pads. Five 5-gallon containers marked "Herbicide" were observed in this building during the preliminary assessment. The contents of the containers are not known. Southeast of the concrete pad areas was an abandoned house. At this location, a small electrical transformer was observed.²

During the site inspection, an approximately 100- by 100-foot area of stressed vegetation was observed northwest of the abandoned house. This area was quantitatively identical to the stressed vegetation west of the middle warehouses.⁴

Located northeast of the concrete pad areas was a former tank farm. Five former tanks areas, which were individually fenced and bermed in concrete, were located in this area of the site. The tanks were not present during the preliminary assessment; however, the concrete containment areas still existed.²

2.3 OWNERSHIP HISTORY

The Linfield Industrial Park Site has been owned by 888 Warehousing, Incorporated, of Brooklyn, New York, since 1986. The park is closed and is not utilized for any purpose.^{2,5}

Before 1986, the site was owned by Publicker Industries, Incorporated, of Philadelphia, Pennsylvania. The site representative, Bernard Shafran, stated that Mr. Publicker had owned the site since at least sometime after World War II. During the ownership by Publicker, the site was operated under different names: Continental Distilling Corporation, Publicker Packaging Services, Publicker Industries, and Linfield Industrial Park. There is no record to indicate who owned the park before Mr. Publicker, 6.7.8

R-51 5-2-15 2-6

Site Name:

Linfield Industrial Park

Project No.: 3263-09

ORIGINAL (Red)

ConRail Consolidated Corporation, of Philadelphia, Pennsylvania, apparently owns the rail lines throughout the site. According to the HALLIBURTON NUS FIT 3 Limerick Township site discovery, the tax office of Limerick, Pennsylvania shows the property tax as being paid by ConRail.³

2.4 SITE USE HISTORY

The site has been inactive since June 1986. The current owner, 888 Warehousing, Incorporated, has

no immediate plans for the site unless a lessee or buyer can be found.^{2,5}

For an undetermined time until 1986, building no. 2 was used to repackage and distribute ethylene glycol (antifreeze) and ammonia-based cleaners. These materials were transported to the facility by rail car and tanker trucks, transferred to smaller containers, and distributed off site for sale. Evidence at the site indicates that one-gallon plastic containers for antifreeze and cleaners may have been

manufactured on site.2,3,9

For an undetermined time beginning in approximately 1945, the facility was operated as a United-States-Government-bonded whiskey warehousing operation. The storage and distribution of whiskey were the main operations. Above-ground storage tanks were the initial means of storage. Whiskey was then transferred to wooden kegs for aging in the warehouses. HALLIBURTON NUS FIT 3 observed that many wooden kegs in various stages of construction and wooden keg pieces were stockpiled, indicating that these wooden kegs were built on site. After the aging process, the whiskey was bottled and labeled at the site. The bottled whiskey product was distributed by rail cars

The facility was once operated as a whiskey distillery. Although the dates of this operation are not

known, the distillery building appears to have been constructed in the early 1800s. Large vats were present in the distillery building. Storage, aging, and distribution of the whiskey products were the

main operations.2

R-51 5 2 15

and trucks.2

The site use before the distillery was constructed is not known.

Linfield Industrial Park

2.5 PERMIT AND REGULATORY ACTION HISTORY

Permit and regulatory action relevant to the subject site is discussed chronologically below:

On September 5, 1972, a violation of the Clean Streams Law was documented by PA DER after an inspection on August 15, 1972 revealed several discharges from the company to the Schuylkill River without a permit. These discharges included deionized wastewater, cooling water, sink wastewater, water-softener waste, and septic-tank seepage.8 According to PA DER correspondence dated January 22, 1974, on January 11, 1973, PA DER sent information to Continental Distilling Corporation (the operating name of the site at this time) detailing the information needed to apply for the industrial wastewaters. No record of results was found. On October 31, 1973, an inspection by PA DER revealed that the facility was still in violation of the Clean Streams Law because of unauthorized discharges. On January 22, 1974, PA DER acknowledged that no information had been received to date from Continental Distilling Corporation regarding permit application. 10

On February 7, 1974, an administrative conference was held between PA DER and Continental Distilling Corporation. During the conference, Continental Distilling submitted the NPDES permit project status cards. On February 8, 1974, PA DER determined that a payment of \$250 to the Clean Water Fund by Continental Distilling Corporation would be considered as final settlement of all claims for the violations of the Clean Streams Law noted during the inspection conducted on February 27, 1973.11

On February 10, 1975, PA DER requested updated NPDES permit project schedule cards and the completion of a permit application.¹² According to correspondence dated July 10, 1975, on February 26, 1975, PA DER had acknowledged the receipt of NPDES permit schedule cards from Continental Distilling Corporation. The NPDES permit application was not submitted. 13

On April 21, 1975, PA DER conducted an inspection of the Continental Distilling Corporation facility; the inspection revealed that the facility's septic system was overflowing. Samples were obtained during the inspection. One discharge from the site had a BOD of more than 80 ppm, and another discharge from the site had a BOD of more than 300 ppm and an ethyl glycol content more than 280 ppm.¹³ The BOD results indicate the amount of dissolved oxygen used up by the sample when incubated in darkness at 20°C for five days. 14 It is not documented who took the samples or where the samples were analyzed. PA DER considered both discharges from the site to be violations of the Clean Streams Law because they were unpermitted discharges. 13

R-51-5-2-15 2-8

Linfield Industrial Park

<u>3263-09</u>

On July 10, 1975, PA DER requested letter notification from Continental Distilling Corporation of the status of its NPDES permit application, the treatment or elimination of contaminated waste discharges, and the facility's plan to correct the septic system problem.¹³

On March 19, 1976, an administrative conference was held between PA DER and Continental Distilling Corporation. The following topics were covered: tile field overflows, unpermitted industrial waste discharges, NPDES application, NPDES permit project status schedule cards, and the Pollution Incident Prevention Plan (PIPP). PA DER required that the old septic tank connected with the old tile field be pumped out as soon as the new tile field was in operation. PA DER requested that updated NPDES permit project status schedule cards and an NPDES permit application be submitted. No specifics were stated regarding the PIPP.15

On April 6, 1976, NPDES project status schedule cards were accepted by PA DER.¹⁶ According to correspondence dated July 13, 1979, on May 18, 1979, PA DER requested a resubmission of the industrial waste permit application for reissue of NPDES Permit No. PA0013293.¹⁷

On July 13, 1979, PA DER required Continental Distilling Corporation to submit a Part II (or better) permit for the discharges to the groundwater via the limestone pit adjacent to warehouse no. 10 and recommended that a treatment facility be used for neutralization and suspended solids removal.¹⁷

On January 11, 1983, PA DER notified Continental Distilling Corporation that the expiration date of NPDES Permit No. PA0013293 was July 12, 1983.¹⁸

On April 27, 1983, PA DER conducted an inspection that revealed the discharge of non-contact compressor cooling water to a storm sewer tributary to the Schuylkill River. On May 5, 1983, PA DER advised Publicker Industries that such unauthorized surface water discharges were occurring. The Part I NPDES application was enclosed with this letter.¹⁹

On January 22, 1985, PA DER issued a letter to Publicker Industries regarding a December 6, 1984 inspection that had been conducted by PA DER in response to citizens' complaints that eye and nasal irritation occurred to persons walking near the cooling water discharge. The inspection revealed that the company was processing "CLEAN JOB," an ammonia-based cleaner. Samples obtained during the visit revealed a BOD more than 405 ppm and phenol concentrations of 5.0 ppb.²⁰

R-51-5-2-15 2 9

Linfield Industrial Park

3263-09

Will have

On May 8, 1985, PA DER confirmed the results of an inspection that had been conducted by PA DER on March 7, 1985. Samples obtained during the inspection revealed that the non-contact cooling water discharged to outfall no. 001 contained a BOD concentration of 11.5 ppm, which violated the terms of NPDES Permit No. PA0013293. The source of contamination was not determined.²¹

On August 13, 1985, PA DER confirmed the results of an inspection that had been conducted by PA DER on July 17, 1985. The inspection results revealed the following sources of potential pollution at the site that could impact the outfall no. 001 discharge to the Schuylkill River: a floor drain in the blending room leading to outfall no. 001, oil tankers with stained soils into the storm sewer, oils in air compressor pit discharge into outfall no. 001, trash compactor oils near the storm sewer inlet, and oil leaks in the bottle room that were discharged to the ground. These conditions were determined by PA DER to be violations of the Clean Streams Law. No Notices of Violation or penalties were filed, however.²²

On May 11, 1987, PA DER requested a renewal application for Publicker Packaging Company's NPDES Permit No. PA0013293; the current permit would expire on December 23, 1988.²³

On February 19, 1991, HALLIBURTON NUS FIT 3 conducted a preliminary assessment inspection of the Linfield Industrial Park Site.²

EPA Emergency Response performed an emergency assessment of the site on March 14 and 27, 1991. Many of the drums observed by the FIT had been moved into an on-site warehouse by the site owner. During the first EPA Emergency Response site visit, during which on-site buildings were not accessed, the following were noted on site: five drums containing material, four truck trailers, three tankers, and an abandoned barn containing transformer carcasses. Stained soil near a transformer field tested positive for PCB contamination greater than 50 ppm. During the second site visit, on-site buildings were investigated. Numerous drums and containers were found inside the various buildings, including containers of sulfuric acid, drums and containers marked "Flammable," containers of liquid caustic materials, thousands of small containers filled with antifreeze, drums of methanol, and a drum marked "Toluene." The buildings were secure and locked. Five samples were taken during the assessment: four were drawn from drums and one was taken from the soil near the transformer. The results of the sample analyses are not known. The large on-site holding tanks were found to be empty. No removal or enforcement action was conducted. 24,25,26

2-10

Linfield Industrial Park

<u>3263-09</u>

ORIGINAL (Red)

2.6 REMEDIAL ACTION TO DATE

On September 9, 1985, Publicker Packaging Services contacted PA DER regarding potential pollution sources revealed in PA DER's August 1985 inspection of potential impacts on NPDES outfall no. 001 to

the Schuylkill River. The following comments were offered by Publicker Packaging Services: 7,27

• The floor drains in the blending area had been sealed off from the blending pit since early

1985. The drains empty into a sump from which material is pumped into a holding tank for

disposal. There is a by-pass valve in the line to the holding tank, which, if opened, would

allow material to flow into the blending pit. This branch was sealed off to prevent any

accidental discharges.

The ground area at the bottle-making room was immediately dug out. The soil had been

disposed through the Boyertown Landfill facility. The quantity of removed soil is not

known.

On July 14, 1975, Continental Distilling Corporation contacted PA DER regarding ethyl alcohol found

in one of the discharges. The following comment was offered by Continental Distilling

Corporation: 28

A contractor was proposed to be hired for the removal of the existing tile field and the

excavation of 150 square feet of soil and for the installation of a new stone base and tile,

cover, and fill. It is not known if these activities were completed. The quantity of

contaminated soil removed is not known.

On December 23, 1985, Publicker Packaging Services contacted PA DER regarding corrective actions

taken in response to a spill on December 14, 1985. The following comments were offered by

Publicker Packaging Services: 29

All residual antifreeze had been vacuumed or picked up with absorbent material. Eldredge

Waste Management, of West Chester, Pennsylvania, had flushed and removed residual

antifreeze from the drain system. A valve had been installed to prevent any liquids from

entering the pipeline. The quantity of contaminated material removed is not known.

No other remediation has taken place at the site.

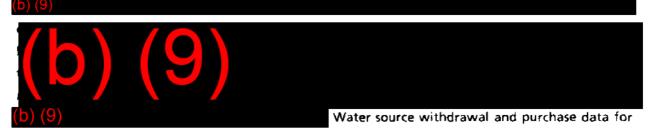
R-51 5-2 15 2-11

SECTION 3.0

Site Name: <u>Li</u>

<u>Linfield Industrial Park</u>

Project No.: 3263-09


3.0 ENVIRONMENTAL SETTING

3.1 WATER SUPPLY

Residents within the study area rely on surface water and groundwater sources for their potable water supplies. CUHWC serves residents in and around the boroughs of Spring City and Royersford within the study area and relies on surface water and groundwater sources of supply. PMWA serves residents in the northwestern part of the study area and relies upon a surface water source of supply. PBWS serves a very small number of residents in the extreme southeastern part of the study area and relies upon a surface water source of supply. The remaining residents of the study area are assumed to maintain private wells or springs for their drinking water supply. 1,30,31,32

CUHWC supplies water within the boroughs of Spring City and Royersford and to small areas of neighboring East Coventry, East Vincent, Limerick, and Upper Providence Townships. Water for this system is obtained from an intake on the Schuylkill River and from three wells. Some water is also purchased from PBWS. The Schuylkill River intake is located directly across the river from the site

report year 1989 are shown below. 1,30,31,32,33,34,35,36, 37

CUHWC Source	Withdrawal/ Purchase (gallons per day)	Number of Days	1989 Total	Percent of System (1989 Total)
Schuylkill River	817,000	248	202,616,000	38.2
(h) (9)	210,000	306	64,260,000	12.1
-(b)(9)	302,000	121	36,542,000	6.9
	612,000	350	214,200,000	40.4
Purchase PBWS	35,100	365	12,811,500	2.4
TOTAL	1,453,000	365	530,429,500	100.00

The CUHWC system is fully integrated and supplies water to a total population of 12,506 persons 1.30,31,32,33,34,35,36,37

Site Name:

Linfield Industrial Park

Project No.: 3263-09

PMWA supplies water to the borough of Pottstown and to portions of neighboring North Coventry and Lower Pottsgrove Townships within the study area. PMWA draws 100 percent of its water supply from an intake on the Schuylkill River located (b) (9)

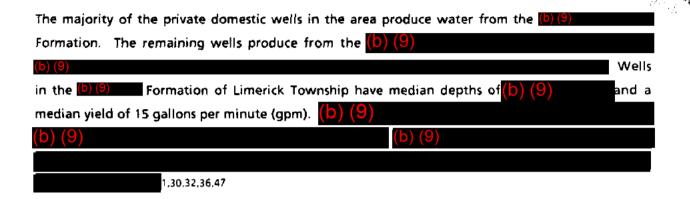
PMWA does not purchase water from or sell water to other public water suppliers. A total population of 31,500 persons is supplied with water by PMWA.1.30.31.32.37.38

The Phoenixville Borough Water System (PBWS) supplies water to the borough of Phoenixville, the community of Mont Clare, and small areas of East Pikeland and Schuylkill Townships. PBWS draws 100 percent of its water supply from an intake on the Schuylkill River (b) (9)

(b) (9)
PBW5 supplies water to a total population of 20,000 persons and sells water to CUHWC.1.32.37,39.40

The Philadelphia Suburban Water Company (PSWC) maintains a surface water intake on the Schuylkill River (b) (9)

PSWC maintains an integrated system supplying water to 222,660 residential connections in areas of Chester, Delaware, and Montgomery Counties. Water for the integrated system is drawn from 37 active wells, five surface water intakes, and a groundwater reservoir located in a former quarry. Water is also purchased from the Pennsylvania - American Water Company (PAWC) - Norristown District and the West Chester Area Municipal Authority. Water source withdrawals and purchase data for report year 1990 are summarized below.1.41.42.43.44.45.46

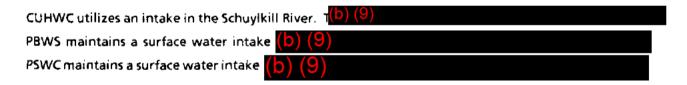

PSWC Source	Withdrawal/ Purchase (gallons per day)	Number of Days	Percent of Total Purchases and Withdrawals
37 wells combined	13,670,000	365	14.8
Upper Merion Reservoir	6,160,000	365	6.7
Crum Creek	20,000,000	365	21.6
Pickering Creek	5,420,000	365	5.9
Perkiomen Creek	19,500,000	365	21.1
Neshaminy Creek	9,590,000	365	10.4
Schuyikill River	11,400,000	365	12.3
Purchases	6,660,000	365	7.2
TOTAL	92,400,000	365	100.00

PSWC also sells water to the Malvern Borough Water Department, PAWC Norristown District, the North Wales Water Authority, and the Hatboro Borough Authority, 1,41,42,43,44,45,46

Site Name:

Linfield Industrial Park

Project No.: 3263-09



3.2 SURFACE WATERS

The Schuylkill River is adjacent to the southern and western boundaries of the site. 1,2 Surface drainage from the site is expected to travel southwestward and flow into the Schuylkill River. 2 The former NPDES outfall is in the northwestern part of the site. Violations of the Clean Water Act have been found during inspections of this outfall by PA DER since 1972.2.8.10.12, 13, 15, 16, 17, 22

PA DER lists the Schuylkill River as protected for the maintenance and/or propagation of fish species indigenous to a warm-water habitat and for the passage, maintenance, and propagation of migratory fishes.⁴⁸ The Schuylkill River has an average flow of 1,888 cubic feet per second (cfs).⁴⁹ The site is located within the 100-year flood-prone area of the Schuylkill River.⁵⁰

Immediately downstream from the site are palustrine, forested, broad-leaved, deciduous, temporarily non-tidal flooded wetlands with approximately three linear miles of frontage.51

3.3 HYDROGEOLOGY

The geologic and hydrogeologic conditions in the study area were researched as part of the site inspection. A preliminary literature review was conducted to determine surface and subsurface geologic conditions, soil character, and the status of groundwater transport and storage.

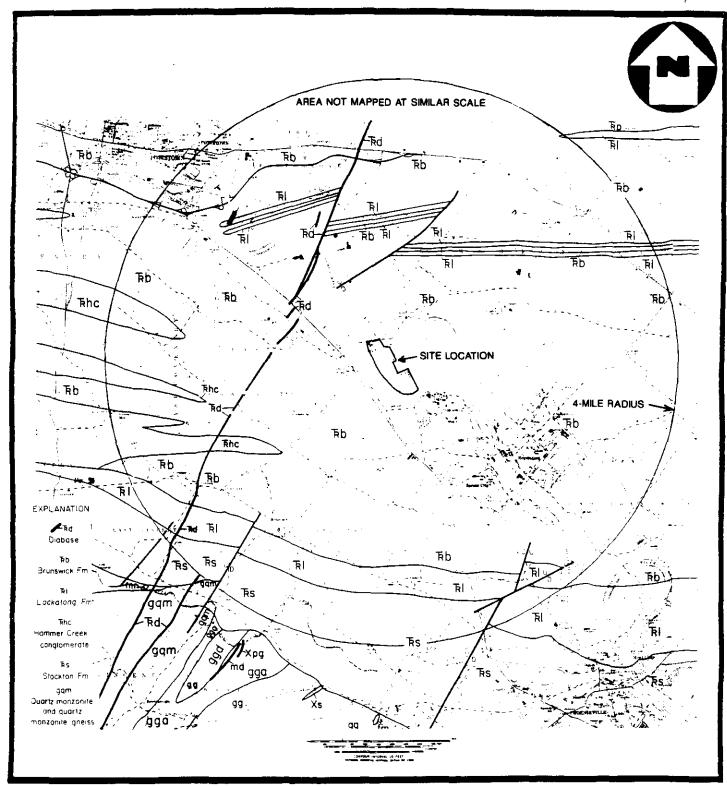
R-51-5-2-15 3-3

Linfield Industrial Park

3263-09

3.3.1 Geology

The site lies within the Triassic Lowlands Section of the Piedmont Physiographic Province. The area is predominantly an undulating plain with relief provided by low hills and ridges. These hills and ridges were formed by the differential weathering and erosion of the sandstones and shales that underlie most of the area. Steeper slopes may be formed along the sides of the Schuylkill River valley, which has been cut below the level of the surrounding countryside. The drainage pattern of the area is dendritic, and the entire study area is drained by the Schuylkill River and its tributaries. 1,52,53


Virtually all of the study area is underlain by rocks of the Late Triassic age Newark Group, which includes the Lockatong, Hammer Creek, Brunswick, and Stockton Formations. These sedimentary rocks have been intruded by diabase dikes and sills, also of Triassic age. These rocks are part of a large Triassic basin that trends generally northeastward from Virginia to New York. The average dip of the beds within this basin is to the north or northwest at about 20 degrees. Within the vicinity of the site, the bedding dips mainly to the north at about 15 degrees. A very small portion of the southwesternmost part of the study area is underlain by quartz monzonite and quartz monzonite gneiss of the Piedmont Uplands Section of the Piedmont Physiographic Province. 36,54,55,56

The rocks of the area are cut by many faults, most of which are relatively small. The nearest of these with respect to the site is located one or more miles to the north. This fault strikes to the northeast and is downthrown to the southeast, noticeably offsetting the dipping units of the Brunswick and Lockatong Formation shown on the geologic map (see figure 3.1, page 3-5). Joint systems are well developed in many of the beds of the Brunswick Formation. A very small set of joints strikes about north 30 degrees east. One or both of two less well-developed joint sets may be present at most locations. These sets strike about north 45 degrees west and north 75 degrees east. All joints are nearly vertical, with an average spacing of about six inches. Their orientation appears to be independent of the strike and dip of the beds. 36,52,54

The formation directly underlying the site and most of the study area is the Triassic age Brunswick Formation. It consists mainly of reddish-brown shale, mudstone, and siltstone. A few very thin beds of green or brown shale are present in some places. Tough, thick-bedded, red argillite is interbedded with a dark gray argillite, typical of the Lockatong Formation, near the base of the Brunswick. Many of the shale beds are micaceous, causing them to split evenly along bedding planes. Calcite and quartz and occasionally barite and pyrite are present, partly filling joints within the Brunswick. The beds of the Brunswick Formation strike from west to east and have dips of approximately 14 to 15 degrees to the north in the vicinity of the site. The exact strike and dip of the beds underlying the site are not known. The Brunswick Formation attains a maximum thickness of 9,000 to 16,000 feet; however, the exact thickness beneath the site is unknown. 36,52,54,57

R-51-5-2-15 3-4

SOURCE: Pennsylvania Geologic Survey. Atlas of Preliminary Geologic Quadrangle Maps of Pennsylvania. Map 61, 1981.

GEOLOGIC MAP LINFIELD INDUSTRIAL PARK MONTGOMERY CO., PA.

Linfield Industrial Park

3263-09

SOL MAN

Stratigraphically underlying and occurring within the Brunswick Formation is the Triassic Lockatong Formation. The nearest estimated subcrop or outcrop locations of the Lockatong Formation occur 1.5 miles or more north and 2.9 miles or more south of the site. The formation consists mainly of medium to dark gray argillite interbedded with thin beds of gray to black shale, siltstone, and marlstone. This formation is usually thick bedded or massive. It is made up largely of analcime, dolomite, feldspar, and clay with scattered pyrite. Calcite is common, especially filling joints, and quartz is a very minor constituent. The Lockatong has a maximum thickness of about 1,500 feet in this area near the Schuylkill River. 36,52,54

Interfingering with the Brunswick Formation is the Hammer Creek Conglomerate. The nearest estimated subcrop or outcrop locations of this unit occur 1.8 or more miles southwest and west of the site. The Hammer Creek is equivalent in age to the Brunswick, and the division of the rocks into these two units is based mainly upon lateral changes in lithologic character. Rocks of the Hammer Creek Conglomerate are much more coarse than those of the Brunswick Formation. They consist of very coarse quartz conglomerate with abundant pebbles and cobbles of gray quartzite along with minor interbeds of coarse red sandstone. Based on outcrop patterns and an average dip of 20 degrees, the Hammer Creek Conglomerate is probably 500 feet thick or less within the study area. 36,58,59

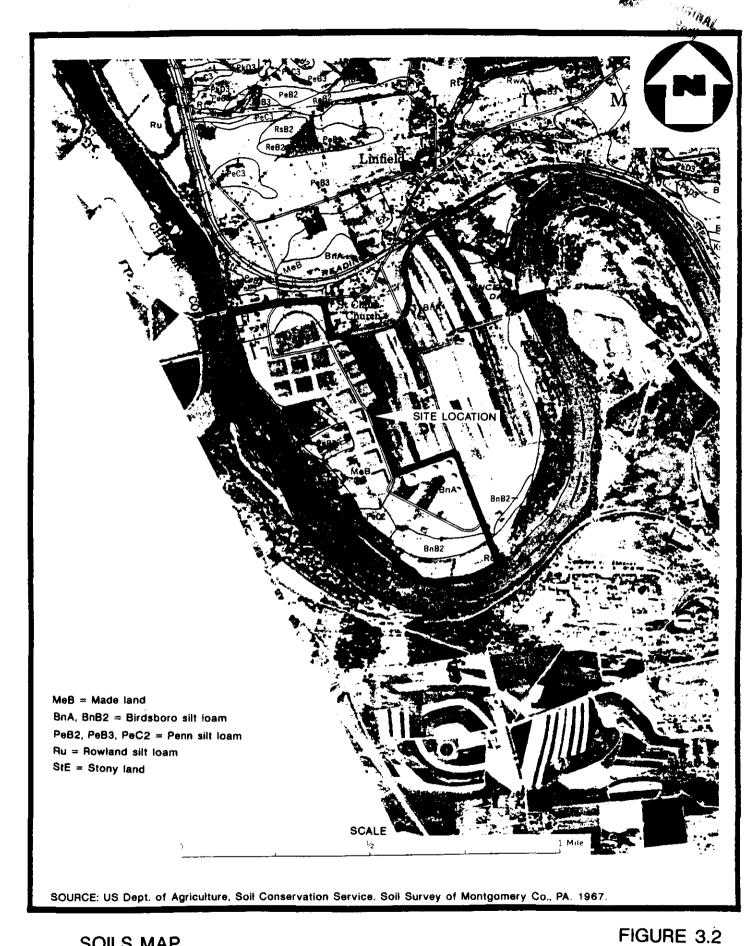
Stratigraphically underlying the Lockatong Formation about 3.2 miles south of the site is the Triassic Stockton Formation. The estimated subcrop or outcrop location occurs 3.2 miles south of the site. It is the oldest of the Triassic rocks found within the study area and is divided into three members. The lower arkose member is characterized by an abundance of coarse-grained arkosic sandstone and arkosic conglomerate. The middle arkose member is characterized by an abundance of fine- and medium-grained arkosic sandstone. The upper shale member consists manly of shale and siltstone. The sandstones of the Stockton are yellow and brown to red, and the shales are red and soft. Sediments of the different textures are irregularly bedded, and beds commonly pinch out or grade laterally into beds of different texture and color. The Stockton Formation is about 2,300 feet thick in the Phoenixville area.^{36,55}

Intruding the Brunswick, Lockatong, Hammer Creek, and Stockton Formations is a series of Triassic diabase sills and dikes. The nearest of these is located about 1.2 miles west-northwest of the site. The diabase intruded as dikes is black, dense, and very fine grained. It consists mainly of labradorite and augite. The dikes are typically five to 100 feet thick. The shales of the Brunswick Formation have been altered to a dark, tough hornfels close to the diabase intrusives. These alteration zones vary greatly in width but are usually between 40 and 100 feet in the vicinity of the smaller dikes. 36,52,54

R-51-5 2-15 3-6

ORIGINAL (Red) Site Name: Project No.: **Linfield Industrial Park**

3263-09


Underlying the Stockton Formation approximately 3.9 miles southwest of the site are quartz monzonite and quartz monzonite gneiss of probable Precambrian age. The unit is a medium- to fine-grained, medium to dark gray rock composed primarily of feldspar and quartz, with dark accessory and alteration minerals including pyroxene, amphibole, and biotite. Locally, the rocks show a foliated or gneissic texture. The thickness of this unit is not estimated.^{57,60}

3.3.2 **Soils**

The soils underlying the site are classified as Made land, Birdsboro, Penn, and Rowland silt loams, and Stony land. The distribution of these units is shown on figure 3.2 (page 3-8). The native soils have been disturbed and/or covered throughout large portions of the site by the construction of buildings, tanks, railroad spurs, roads, and other site facilities.^{2,61}

Made land (MeB on figure 3.2) covers approximately 50 percent of the site in the northern and central-eastern portions. This unit is more specifically described as Made land, shale and sandstone materials, sloping. It results from the altering and mixing of soils that formed in material weathered from shale and sandstone. It is mainly nearly level and gently sloping but also includes some moderately sloping and steep areas. It is used for residential, industrial, commercial, and institutional development. Dusky-red to yellowish-brown shaly silt loam to channery sandy loam comprise much of the unit, and many areas consist entirely of pieces of shale. Bedrock may crop out in some places and may be as much as six feet deep in other places. The estimated permeability ranges from moderate to very slow (2.0 to less than 0.2 inch per hour). The soil reaction is medium acid to very strongly acid (pH, 6.0 to 4.5).61

Birdsboro silt loam soils cover approximately 20 percent of the site in the southeastern portion. They are present as the Birdsboro silt loam, zero to three percent slopes (BuA on figure 3.2) and as Birdsboro silt loam, three to eight percent slopes, moderately eroded (BnB2 on figure 3.2). They are deep, well-drained, reddish-brown soils that formed from stream sediments washed from uplands underlain by red shale and sandstone. In a typical Birdsboro soil profile, the surface layer is friable, dark, reddish-brown silt loam with a few river pebbles. The surface layer is about eight inches thick. The subsoil is friable, reddish-brown silty clay loam or clay loam 2-1/2 to three feet thick. The substratum is red or reddish-brown sandy loam about two feet thick and contains considerable gravel. The substratum is underlain by a layer of firm, dusky-red silt loam weathered from underlying rock. Soft, weathered dusky red shale bedrock is typically found at a depth of seven feet; however, the depth to bedrock ranges from four to 15 feet. Birdsboro soils have moderate permeability (0.63 to two inches per hour) and high available moisture capacity. The soil reaction is strongly acid to medium acid (pH, 5.1 to 6.0).61

SOILS MAP LINFIELD INDUSTRIAL PARK MONTGOMERY CO., PA.

HALLIBURTON NUS
Environmental Corporation

Site Name: <u>Linfield Industrial Park</u>

Project No.: 3263-09

Rowland silt loam, coal overwash (Ru on figure 3.2), covers approximately 10 percent of the site along the western and southern boundaries adjacent to the Schuylkill River. Rowland soils are deep, moderately well-drained to somewhat poorly drained, nearly level silt loams on floodplains. They formed from material washed from uplands underlain by red shale and sandstone. The Rowland silt loam, coal overwash unit has a surface layer of black silt loam that is one to three feet thick. This is underlain by a substratum consisting of several layers of dark reddish-gray silt loam. Shale or sandstone bedrock occurs at a depth of three to 12 feet. This soil has moderate permeability (0.63 to two inches per hour) and high available moisture capacity. The soil reaction is very strongly acid to medium acid (pH, 4.5 to 6.0).61

Penn silt loam soils cover approximately 10 percent of the site in the south-central and west-central portions. They are present as the Penn silt loam, three to eight percent slopes, moderately eroded (PeB2 on figure 3.2); the Penn silt loam, three to eight percent slopes, severely eroded (PeB3 on figure 3.2); and the Penn silt loam, eight to 15 percent slopes, moderately eroded (PeC2 on figure 3.2). They are moderately deep to shallow, reddish-brown silt loams that formed in material weathered from red shale, siltstone, and fine-grained sandstone. In a representative profile, the surface layer is friable, reddish-brown silt loam about eight inches thick. The subsoil is reddish-brown shaly silt loam about 12 inches thick, and the substratum is a weak red layer of broken shale pieces with a small amount of silt or loam about 10 to 12 inches thick. Shale, siltstone, or fine-grained sandstone bedrock occurs at a depth of two to three feet. Penn soils have moderately rapid permeability (two to 6.3 inches per hour) and low to moderate available moisture capacity. The soil reaction is strongly acid to neutral (pH, 4.5 to 7.0).61

Stony land, steep (StE on figure 3.2) covers approximately 10 percent of the site in a narrow band along the steep slopes of the western portion. This land type occurs in areas of Manor, Penn, Edgemont, and Neshaminy soils; however, individual soil types are not mapped within this unit. These areas are stony and often contain rock ledges and have slopes ranging from 25 to 80 percent. The soil horizons are typically shallow, and the depth to bedrock ranges from several inches to 10 feet. Surface runoff is rapid, and internal drainage is medium to rapid. Permeability and soil reaction values are variable and are not assigned for this unit.⁶¹

3.3.3 Groundwater

Groundwater in the area occurs under water-table and artesian conditions. Recharge of groundwater is due to the fraction of the local precipitation that infiltrates the soil and underlying material, eventually reaching the saturated zone. From this point, groundwater generally moves downward and laterally until it eventually returns to the surface through discharge points such as springs, seeps, wells, and streambeds.^{52,54}

R-\$1-5-2-15 3-9

Site Name:

Linfield Industrial Park

Project No.: 3263-09

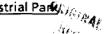
ORIGINAL (Red)

The rocks of the (b) (9) Formation form the aquifer immediately underlying the site. Groundwater in the (b) (9) Formation is mainly stored in and moves through secondary forms of porosity. Due to the fine-grained nature of most of the rocks of the (b) (9) the permeability due to primary porosity is small. Fractures parallel to bedding are usually narrow and probably contribute little to the formation's permeability. The most significant openings with respect to groundwater flow are the nearby vertical joint planes, which cross each other at various angles throughout the beds of the (b) (9) Formation. These provide an interconnected series of channels through which groundwater can flow. 52.54

The (b) (9) is generally a reliable source of small to moderate supplies of water. Sufficient supplies of water for domestic use can be obtained at almost any location from wells drilled (b) (9) below the water table. In order to obtain maximum yields, wells should be drilled to depths ranging (b) (9) or more. Wells in the (b) (9) or mation of Montgomery County yield from five gpm or less to more than 300 gpm. 52.54

Forty-two wells in the (b) (9) within Limerick Township range in depth (0) (9) feet, with a median depth (b) (9) These wells have yields ranging from four to 60 gpm, with a median value of 15 gpm. The static water levels in these wells range from (b) (9) the surface, with a median depth of (b) (9) he surface. The median depth to consolidated bedrock is (b) (9)

The (b) (9) of the area; however, domestic supplies are usually available at depths of not more than 250 feet. The rocks have low porosity and low permeability, although joint openings provide secondary porosity and permeability. The least permeable beds are shale and argillite, which have little or no intergranular permeability. Well yields from the (b) (9) on Chester County range from five to 32 gpm, with a median value of 12 gpm.53,57,59


will generally provide sufficient amounts of groundwater for domestic use and will frequently yield adequate supplies for small municipal and industrial uses. Most of the groundwater occurs in and moves through secondary openings along bedding planes, joints, and faults. Domestic wells in the I(b) (9) have specific capacities ranging from less than 0.04 to over four gpm per foot of drawdown, with a median value of 0.53 gpm per foot of drawdown. Non-domestic wells have a median-specific capacity of 0.9 gpm per foot of drawdown and a median yield of 120 gpm.⁶²

R-51-5-2-15 3-10

Site Name:

Linfield Industrial Park()

Project No.: 3263-0

The (b) (9) Formation is capable of yielding moderate to large supplies of water to wells. The more coarse sandstone and conglomerate beds are the best aquifers of the formation. The (b) (9) Formation has high to moderate total effective porosity and permeability resulting from primary intergranular openings in the weathered portion and from secondary joint and bedding-plane openings in the unweathered portion. Well yields in the Stockton Formation of Chester County range from four to 800 gpm, with a median value of 25 gpm. 53.57,59

The (b) (9) is considered to be a poor formation as a source of water. Most of the groundwater circulation is dependent upon joint openings, which provide very low secondary porosity and low permeability. The (b) (9) is relatively impervious and is expected to act as a barrier to groundwater flow with respect to the adjacent Triassic sedimentary rocks. The (b) (9) vill usually yield small amounts of water from relatively shallow depths sufficient for domestic supplies. Well yields in (b) (9) in Chester County range from 0.5 to 40 gpm, with a median value of nine gpm.53,57,59

generally comprises poor water-bearing rocks; however, it yields small supplies sufficient for domestic use. These rocks have low primary porosity, although joints provide secondary porosity and permeability of low magnitude. The best water-bearing zones are in the most weathered and fractured portions above the fresh, consolidated bedrock. Wells in th (9) of Chester County have yields ranging from one to 180 gpm, with a median value of 24 gpm. 53,57,59

Available records indicate that six industrial supply wells were completed at the site in 1934 and 1935. These wells range in depth (b) (9)

All are completed in the (b) (9) Formation and have yields ranging from 10 to 225 gpm, with an average yield of 117.5 gpm. The static water levels and depth of casing in the wells are not reported. These wells were not observed during the site inspection, and their current status is unknown.^{4,53}

The actual depth to groundwater and direction of shallow groundwater flow at the site are unknown. Based on topographic control and on the role of rivers and streams as groundwater discharge points, the direction of groundwater flow throughout most of the site is expected to be to the west, southwest, or south toward the Schuylkill River. Based on the site's topographic elevations with respect to the Schuylkill River, the depth to groundwater is expected to be within a few feet of the surface adjacent to the river and to be less than or equal to about 70 feet below the ground surface at the highest elevation of the site. Median water depths in area wells suggest that the depth to groundwater is probably on the order of 40 feet below the ground surface.1,47,52,54

ORIGINAL (Red)

Site Name: Project No.: <u>Linfield Industrial Park</u>

3263-09

3.4 CLIMATE AND METEOROLOGY

According to the climatological data obtained for the city of Phoenixville, Pennsylvania, located approximately six miles southeast of the site, and based on the period from 1951 to 1980, the following is offered. The average annual temperature is 53.1°F; the coldest month is January with a mean temperature of 30.1°F, and the warmest month is July with a mean temperature of 74.9°F. The average annual precipitation is 43.55 inches. The month of highest average precipitation is July, with 4.13 inches; the month with the lowest average precipitation is February, with 2.94 inches. A one-year, 24-hour rainfall will produce 2.5 inches of rain. A two-year, 24-hour rainfall will produce 3.5 inches of rain. The mean annual lake evaporation for the area is 32 inches. The net moisture gain is 11-1/2 inches.63,64,65,66

3.5 LAND USE

The site is located in a rural, mostly residential area. State Game Lands No. 234 is to the east. The Schuylkill River borders the property on the southern and western banks. The residential town of Linfield is located adjacent to and north-northeast of the site. ConRail Corporation has abandoned tracks on site. 1,2

3.6 POPULATION DISTRIBUTION

The Linfield Industrial Park Site is located in the rural outskirts south-southwest of Linfield, Pennsylvania. The population is as follows: 1,34,37

<u>Distance</u>	Population
0 to 1/4 mile	126
1/4 to 1/2 mile	338
1/2 to 1 mile	. 1,251
1 to 2 miles	. 9,348
2 to 3 miles	. 6,715
3 to 4 miles	15,702
Total	34,010

Population figures are based on a count of houses in the study area multiplied by 2.79 persons per house and water supply population figures furnished by CUHWC and PMWA.1,34,37

Site Name: <u>Linfield Industrial Park</u>

Project No.: 3263-09

3.7 CRITICAL ENVIRONMENTS

Two federally listed endangered birds are expected to be found as transient species in the study area. They are the bald eagle (<u>Haliaeetus leucocephalus</u>) and the peregrine falcon (<u>Falco peregrinus</u>). There is no listed critical habitat for these species in the study area.⁶⁷

3-13

R-51-5-2-15

SECTION 4.0

..

Site Name: Project No.:

Linfield Industrial Park

<u>3263-09</u>

RECINAL

4.0 WASTE TYPES AND QUANTITIES

Linfield Industrial Park was operated as a whiskey distillery and a bonded warehouse for the storage

and distribution of whiskey products. For an unknown period of time, ethylene glycol (antifreeze)

and ammonia-based cleaners were bottled and distributed from the site.^{2,13,19} The site has remained

inactive since it was sold to 888 Warehousing in 1986. The condition of the site has remained the

same since its closure.2

There are no records detailing the waste types and quantities generated at the Linfield Industrial

Park; however, during the FIT preliminary assessment, numerous items of concern were observed:2

Parking Lot Area

An abandoned tanker truck was observed northwest of the on-site parking lot. The truck had an

approximately 8,000-gallon capacity. The truck's contents were not known.²

Distillery Area

The distillery building contains approximately eight wooden vats (10 by 20 feet in size) that have an

approximately 11,700-gallon capacity. An underground fuel tank with a pump in the distillery area

had an approximate capacity of 1,000 gallons. The contents of the fuel tanks are not known. North

and west of the distillery building are five above-ground storage tanks. These tanks are metal; the

contents are not known. Three of the cylinders are six by 25 feet in size with a 5,284-gallon capacity;

two of the cylinders are five by 10 feet in size with a capacity of 939 gallons each. North of these

tanks are two underground storage tanks with an approximate capacity of 10,000 gallons each; an

unknown quantity of an oil-like substance was inside the tanks. Adjacent to and east of the tanks are

an electrical transformer unit and an area of stained soils. The unit measures four by five by four feet

in size and contains liquid. Ten 55-gallon drums containing waste oils and unknown materials were

observed in this area. Southwest of the distillery building in a shed are ten 55-gallon drums marked

"Oil and Varnish." The contents of the drums are not known. South of the distillery building is a

metal cylinder above-ground storage tank, 30 by 50 feet in size, with an approximately 264,231-

gallon capacity; the contents of the tank are not known.2

R-51-5-2 i5 4-1

ORIGINAL (Red) Site Name: Project No.: Linfield Industrial Park

3263-<u>09</u>

Building No. 2 Area

Located east of building no. 2 are 10 above-ground black metal cylinder storage tanks, six by 40 feet

in size, with 8,455-gallon capacities. There are also one white metal cylinder above-ground storage

tank, five by 30 feet in size with a 4,400-gallon capacity, and one aluminum-brushed metal cylinder

above-ground storage tank, five by 10 feet in size with a 1,467-gallon capacity. Four abandoned

tanker trucks were observed around building no. 2. One truck was still hooked to the building via a

discharge pipe. The trucks have a capacity of 8,000 gallons each; the contents of the trucks were not

known.2

Warehouse Area

Two aluminum cylinder above-ground storage tanks, 40 by 50 feet in size with a 469,244-gallon

capacity, and one aluminum cylinder above-ground storage tank, eight by 15 feet in size with a 5,637-

gallon capacity, were located centrally among the warehouse buildings.2

Concrete Pad Area

At least twenty-two 55-gallon drums were observed in this area: ten 55-gallon drums were empty

and rusted, and twelve 55-gallon drums contained unknown liquids. Four drums are located on or

near the northwestern pad area, and eight drums are located on or near the southeastern concrete

pad area. One 55-gallon drum near the southeastern concrete pad area contained an oil-like residue

that had spilled. A stained soil area measuring approximately three by six feet in size was observed in

this area. Five 5-gallon metal drums marked "Herbicide" were observed in a shed-like building. A 20-

gallon transformer is located south of the pads with stained soils.2

Former Tank Farm Area

R-51-5-2-15

This area once housed five metal cylinder above-ground storage tanks. The tanks were individually

fenced and bermed. At an unknown date, the tanks were dismantled and removed. Currently, only

the fenced concrete containment areas exist. 1,2,4

4-2

Site Name:

Linfield Industrial Park

Project No.: 3263-09

Miscellaneous Waste Areas

An unlined limestone pit, adjacent to warehouse no. 10, allegedly was used to dispose of deionized

wastewater via groundwater after neutralization. The site, condition, and location of this pit are not

known. Also, a catch basin was reportedly utilized for settling suspended solids to reduce the amount

of wastewater sent to the wastewater treatment plant. According to PA DER file information,

wastewater generated at the site was disposed in the Schuylkill River via the NPDES outfall. Ethylene

glycol that spilled into the parking lot drainage system resulted in a contractual removal assistance by

Eldridge Waste Management, of Chester, Pennsylvania. The quantity of waste removed is unknown.

The soil area at the bottle-making room was contaminated with unknown substances and disposed at

the Boyertown Landfill. The quantity of contaminated soils is unknown, 7,8,10,15,17,19,21,22,29

During an emergency assessment of the site performed by EPA Emergency Response on March 14 and

27, 1991, numerous drums and containers were found within the on-site buildings. These included

containers of sulfuric acid, drums and containers marked "Flammable," containers of liquid caustic

materials, thousands of small containers filled with antifreeze, drums of methanol, and a drum

marked "Toluene." 24,25

On-site surface soil samples collected by HALLIBURTON NUS ARCS III on January 30, 1992 contained

elevated levels of a number of organic and inorganic contaminants, including fluoranthene (72,000

ppb), benzo(a)pyrene (30,000 ppb), PCBs (300,000 ppb), and lead (4,810 ppm).4

During the site inspection, a trash dump measuring approximately 30 by 75 feet and consisting mostly

of empty plastic antifreeze containers was observed between the southernmost warehouse and the

Schuylkill River. Adjacent to this area were approximately 60 upright empty and rusted drums. No

markings were visible on the drums.4

R-51-5-2-15 4-3

SECTION 5.0

Site Name:

Linfield Industrial Park

3263-09 Project No.:

5.0 FIELD TRIP REPORT

5.1 **SUMMARY**

On Tuesday, January 28, 1992, HALLIBURTON NUS ARCS III personnel (b) (6)

conducted a site inspection of

the Linfield Industrial Park Site in Linfield, Montgomery County, Pennsylvania. Weather conditions were clear with light winds, and temperatures were in the 30s.

Eleven aqueous and 14 solid samples were obtained (see figures 5.1 and 5.2, pages 5-4 and 5-5). Photographs were taken on site (see figure 5.3, page 5-7, and the photograph log, section 5.5).

5.2 **PERSONS CONTACTED**

5.2.1 **Prior to Field Trip**

Bernard Shafran Frenkel and Hershkowitz, P.C. Attorneys at Law 319 Fifth Avenue New York, NY 10016 (212) 679-4666

George Danyliw PA DER Southeast Regional Office Lee Park, Suite 6010 555 North Lane Conshohocken, PA 19428 (215) 832-6145

5.2.2 At the Site

Bernard Shafran Frenkel and Hershkowitz, P.C. Attorneys at Law 319 Fifth Avenue New York, NY 10016 (212) 679-4666

Zelma Maldonado U.S. EPA 841 Chestnut Building Philadelphia, PA 19107 (215) 597-8333

Marty Powell U.S. EPA 841 Chestnut Building Philadelphia, PA 19107 (215) 597-6680

Zelma Maldonado U.S. EPA 841 Chestnut Building Philadelphia, PA 19107 (215) 597-8333

5-1 R-51-5-2 15

ORIGINAL (Red)

Site Name: Project No.: **Linfield Industrial Park**

3263-09

5.2.3 Water Supply Well Information

The following off-site wells were sampled during the site inspection. (b) (6)

Completed well questionnaires are located in appendix C.

(b) (6) (b) (6) Linfield, Pennsylvania 19468 (b) (6) Drinking (b) (6)

5.3 SAMPLE LOG

SITE NAME Linfield Industrial Part

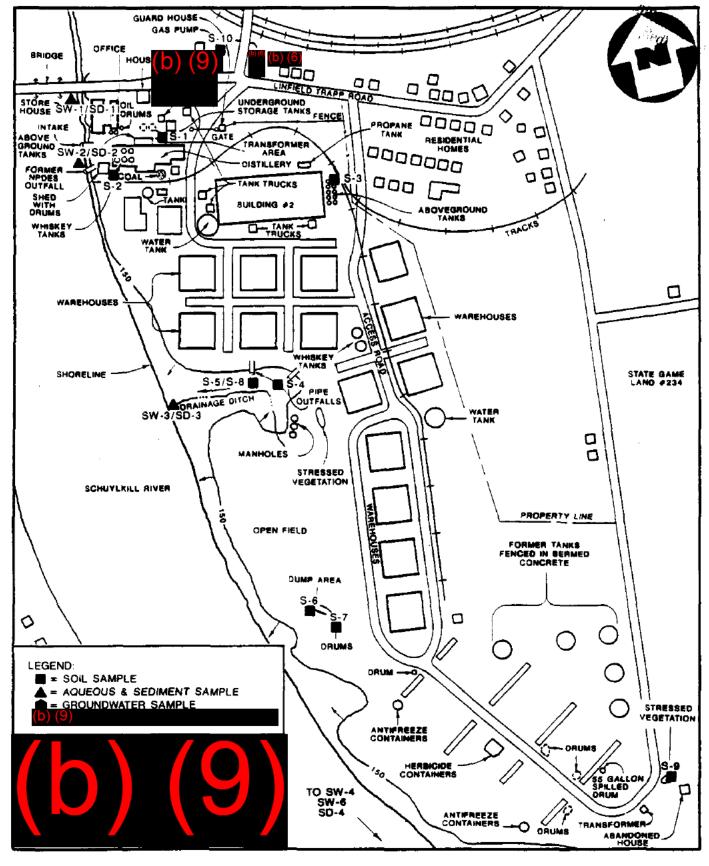
TOD NUMBER _	<u> 3263-04</u>	
	PA-2898	

TRAFFIC REPORTS Organic Inorganic High Hazard		SAMPLE IDENTIFIER	PHASE	SAMPLE DESCRIPTION	SAMPLE LOCATION	TARGET USE	рН	FIELD MEASUREMENTS	
 	MCJE 02		(b) (9)	AQ	Clear, no odor	(b) (9)	Drinking water for the people of Spring City and Reserved		No HNU readings utose blegd.
CHY 03	WCZE 03		(b) (9)	ÂQ	Clear, no oder	(b) (9) Linfield, PA	Drinking		
CHY 04	MCJE O4		(b) (9)	AQ	clear, no odor	(b) (9)	Drinking		
CHY 05	MCJE 05		5W-1	AQ	clear, fish-like odor	Upstream sample from Schuylkill R., under Main St. bridge	Recreation; three water companies operate insules within 15 miles down them 15 miles	6.92	No HNU readings about background
CHY DE	M(JE 06		5W-2	AQ	clear , no odor	Mid-stream sample from Schuylkill R., at former NPOES discharge	Recreation; short water companies operate water intakes within 15 miles downstream	672	
CHY 07	MCJE 67		5W-3	AQ	Clear , no ador	On-sitt drawage small v 30' from confluence vr,+h Scoylkill R.	No Uses	6.70	
(44 08	WCIE 08		5W-4	AQ	Stightly tooked, no	Downstream sample From Schoolkill R.	Recreation; three water companies operate natakes within 15 miles downstream	647	
CHAID	MCJE 10		5W-6	AQ	Diplicate of SW-4	Same as 5W-4	same as SW-4		
CHYOq	MCJE 09		(b) (9)	ΑQ	Clear, no odor	(b) (9)	Drinking Water for String City and Regerificat		28

5.3 SAMPLE LOG

SITE NAME Linfield Industrial Park

TOD NUMBER 3263-09
EPA NUMBER PA - 2898

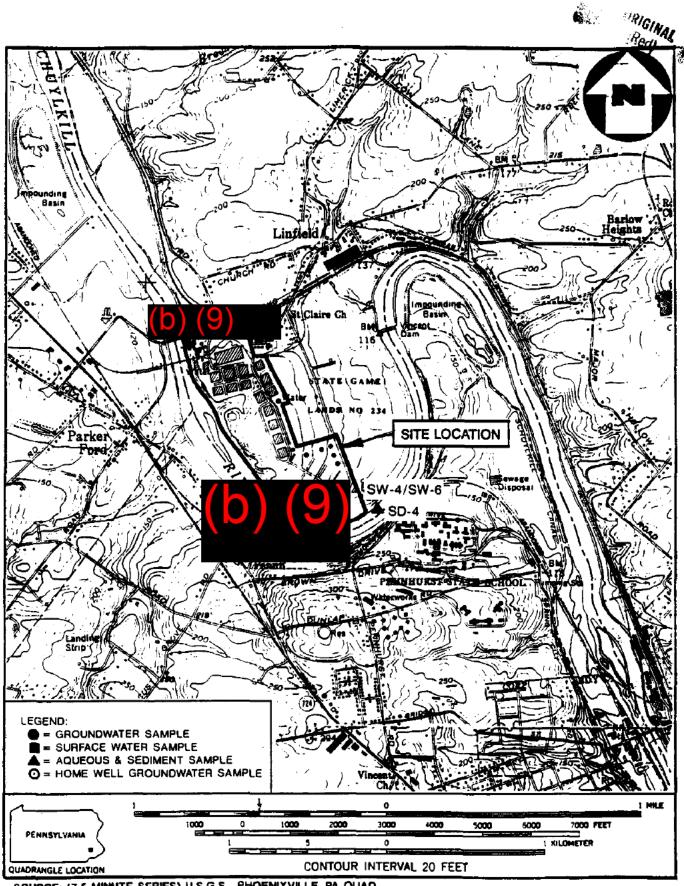

TRAFFIC REPORTS Organic Inorganic High Hazard		SAMPLE IDENTIFIE		PHASE	SAMPLE DESCRIPTION	SAMPLE LOCATION	TARGET USE	рH	FIELD MEASUREMENT
CHY 14	MCJE 19		S ₋ -5	SCL	red sandy clay	At corrugated metal pipe outfall south and west of wavehouses	Accèss unresoviceld		No HNU readings above background
CHY 22	MCJE 22		5-8	SOL	Duplicate of 5-5	saml as 5-5	Access unvestricted		
CHY 20	MCJE 20		5-6	SOL	Dark brown so:1 with extensive organic material, flakes of white material cases	Southeastein edge of trash dump west of wavehouses	Accèss unreseriated		
CHY 21	MCJE 21		5 - 7	SOL .	Dark gray soil with crange specks on site	~ 10' south of drums near trashdump west of ware houses	Access unverticeed		
CHY 23	MCJE 23		5-9	SOL	brown sandy loam	In area of stressed vegetation ~ 100' north of abandould building it southern find of site	Access unrestruted		
CHY 26	MCJE 26		5 - 10	SOL	trown, clayey soil off site	Acress Main St. from site	Access unrestanted		<i></i>
CHY 25			5 - 0	AQ	Aqueous trip blank associated with solid samples				
	<u> </u> 						-		

5.3 SAMPLE LOG

SITE NAME Linfield Industrial Park

TDD NUMBER 3263-09
EPA NUMBER PA-2848

TRAFFIC REPORTS		SAMPLE IDENTIFIER	PHASE	HASE SAMPLE DESCRIPTION SAMPLE LOCATION TARGET U		TARGET USE	рН	FIELD MEASUREMENT:	
Organic	Inorganic	High Hazard	·						
CHY 24	MCJE 24		A Q-0	AQ	Aqueous blank				
CHY II	MCJE		Sd-1	SOL	light brown silt, red shale pebbles, some organic matter	same as SW-1	Access unrestricted		No HNU readings above background
CHYÏZ	MCJE 12		sd-2	SOL	light brown silt, some organic matter	same as SW-2	Access unvestricted		
CHY 13	MCJE 13		5d-3	SOL	clayty silt, reddish	Same as SW-3	Access unrestricted		
CHY 14	MCTE 4		5d - 4	SOL	Brown sandy I gam	Sumlas SW-4	Access unrestricted		
CHY 15	MCJE 15		S - I	SOL	dark brown candy loam on sitt	A+ base of transferate on northern side of distillery	Access unrestricted		
CHY 16	M <je 16<="" td=""><td></td><td>S - 2</td><td>SOL</td><td>black viscous silty clay with grease idor</td><td>A+ drums outside of shed west of discillery</td><td>Access varestricted</td><td></td><td></td></je>		S - 2	SOL	black viscous silty clay with grease idor	A+ drums outside of shed west of discillery	Access varestricted		
CHY 17	MCJE 17		S - 3	SOL	Brown toam with some rocts and reddishelay on site	Inside above ground tank farm on Eastern side of building #2	Accèss unvestillated		
CHY 18	W(JE 18	·	s - 4	SOL	Brown sandy loam	At confluence of two concrete drainings troughs South and west of Watcherses	Access unrosamented		Salar Sa


SAMPLE LOCATION MAP

LINFIELD INDUSTRIAL PARK, LINFIELD, PA.

(NO SCALE)

FIGURE 5.1

SOURCE: (7.5 MINUTE SERIES) U.S.G.S. PHOENIXVILLE, PA QUAD.

OFF-SITE SAMPLE LOCATION MAP

LINFIELD INDUSTRIAL PARK, LINFIELD, PA.

SCALE 1: 24000

FIGURE 5.2

Site Name: Project No.:

Linfield Industrial Park

3263-09

Red

5.4 SITE OBSERVATIONS

• The background HNU reading was 0.4 ppm. No readings above background were recorded.

 The radiation mini-alert was set on the X1 position. No readings above background were recorded.

The entrance gate to the site was fitted with a lock and chain.

• There was a fence on the northeastern corner of the site. Otherwise, pedestrian access to the

site was unrestricted.

The on-site production well was not accessible for sampling. An inoperative pump was inside

the well.

A trash dump, consisting mostly of empty plastic antifreeze containers, was west of the

southernmost warehouse. The dump measured approximately 30 by 75 feet. Adjacent to the

dump were approximately 60 drums that were upright, empty, and rusted. No markings were

visible on the drums.

• Two areas of stressed vegetation were observed on site: an approximately 20- by 100-foot

area in the middle of the site, between the warehouse and the Schuylkill River, and an

approximately 100- by 100-foot area at the southern end of the site. The vegetation in these

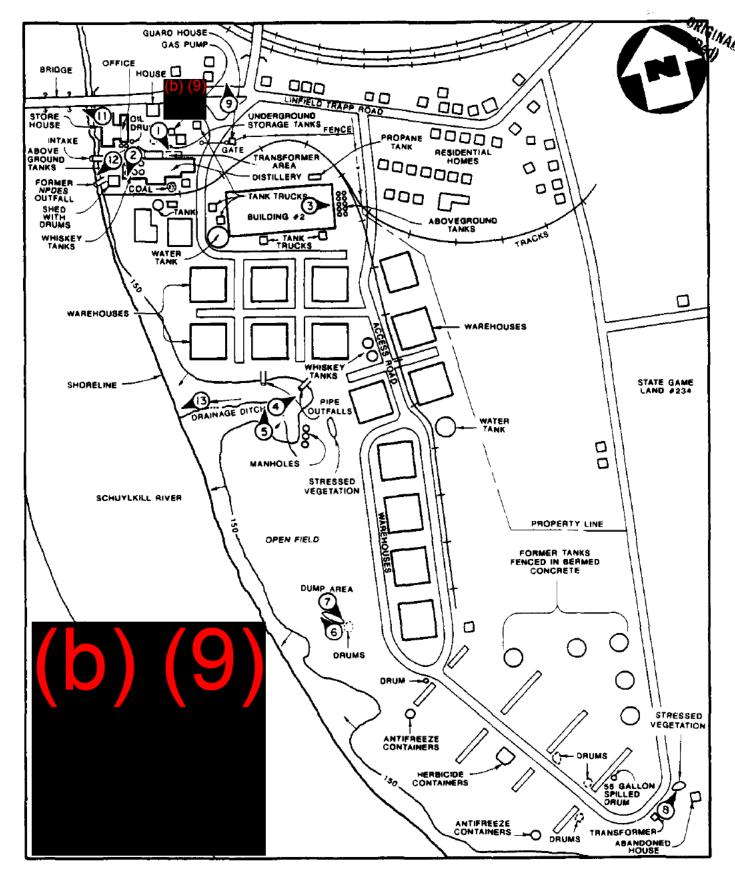
two areas was identical.

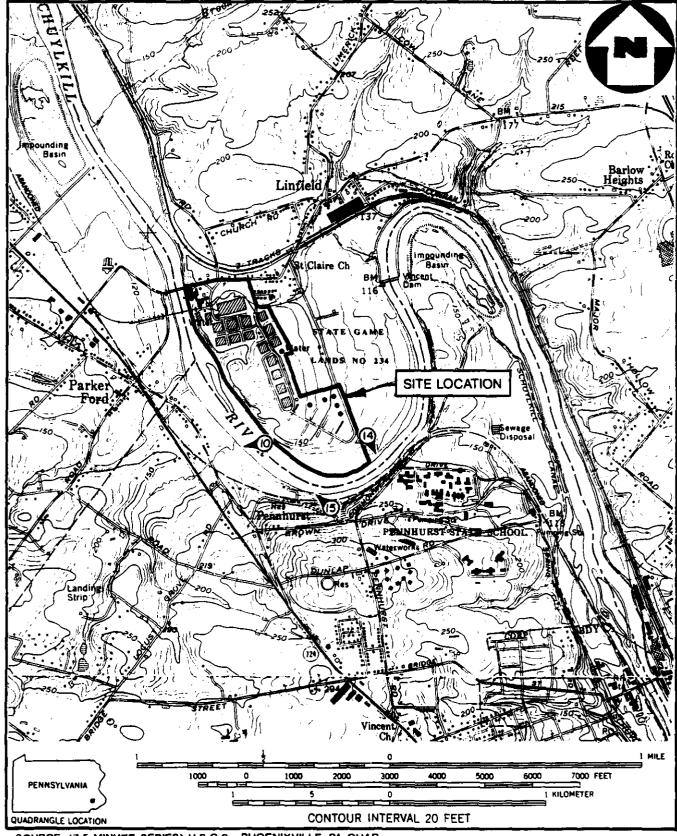
Bicycle tracks were observed in the snow between the third and fourth warehouse from the

southernmost warehouse.

Shotgun shells were observed throughout the site.

R-51-5-2-15 **5-6**




PHOTO LOCATION MAP
LINFIELD INDUSTRIAL PARK, LINFIELD, PA.

(NO SCALE)

FIGURE 5.3

SOURCE: (7.5 MINUTE SERIES) U.S.G.S. PHOENIXVILLE, PA QUAD.

OFF-SITE PHOTO LOCATION MAP

LINFIELD INDUSTRIAL PARK, LINFIELD, PA.

SCALE 1: 24000

FIGURE 5.4

EPA REGION III SUPERFUND DOCUMENT MANAGEMENT SYSTEM

DOC ID #_	4047	8	X	
PAGE#				

IMAGERY COVER SHEET UNSCANNABLE ITEM

Contact the CERCLA Records Center to view this document.

Linfield

OPERABLE UNIT

SECTION/BOX/FOLDER |

REPORT OR DOCUMENT TITLE FINAL SCREENING SHE
Inspection 1
DATE OF DOCUMENT Sept, 1, 1992
DESCRIPTION OF IMAGERY Photos
· ·
NUMBER AND TYPE OF IMAGERY ITEM(S) 15 Photos

gg Pa

9	EPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

3263-09	A STORES
I. IDENTIFIC	ATION
OI STATE PA	02 SITE NUMBER 2898

W LIV	PA	RT 1 - SITE L	OCATION AND I	SPECTION	INFORMATIO	N	PA PA	2898			
II. SITE NAME AND LOCATI	ON							· ·			
-D1 SITE NAME (Legal, common, or	descriptive name of	ute)		02 STREET,	ROUTE NO., OR SP	ECIFIC LOCATION	IDENTIFIER				
Linfield Industri	al Park			Linfield - Trappe Road							
D3 CITY			<u> </u>	04 STATE	05 ZIP CODE	06 COUNTY		67 COUNTY CODE	08 CONG. DIST		
Linfield				PA	19468	 Montgomer	·y	091	PA10		
09 COORDINATES			10 TYPE OF OWNER								
40° 12' 08" - N	_75° _34.		A. PRIVATE	B. FEDERA		C. STAT		KNOWN	E. MUNIÇIPAL		
III. INSPECTION INFORMAT	ION			-							
01 DATE OF INSPECTION	02 SITE STATUS		03 YEARS OF OPERA	TION							
1 / 28 / 92	A. ACTIVE		unknov				UN	KNOWN			
month day year 04 AGENCY PERFORMING INSPECT	ION (Check all that a		BEGINNING YE	AR	ENDING YEAR						
□ A. ЕРА 🗐 В. ЕРА СО		LIBURTON	NUS (To MUNICI	IPAL TO N	IUNICIPAL CONTR	ACTOR				
E. STATE DF. STATES		(Name of firm)						Name of firm)			
	CONTRACTOR	Name of firm)		To. Olues		(Specify)	1				
05 CHIEF INSPECTOR		06 TITLE			07 ORGANIZA		08 TELEP				
(b) (4)		Geologi	st		HALLIBUE 11 ORGANIZA				 -		
(b) (4)			mental Scient	tist	HALLIBUE		12 TELEPHONE NO. (215.) 971-0900				
(b) (4)		F- vé man			HALL Y DUE	(015.)	(215) 971-0900				
(b) <u>(4)</u>		Enviror	mental Scient	tist	HALLIBUF	CIUN NUS	215 / 9	/1-0900			
(b) (4)	<u></u>	Environ	mental Scient	tist	HALLIBUE	RTON NUS	(215) 9:	71-0900			
(b) (4)		Environ	mental Scient	mental Scientist HALLIBUR			(215) 9	71-0900			
(b) (4)		Environ	mental Scient	tist	HALLIBUR	RTON NUS	215) 971-0900				
13 SITE REPRESENTATIVES INTERV	IEWED	14 TITLE			16 TELEPHONE NO.						
Bernard Shafran		Attorne	у		th Avenue k, New York	10016	(212) 6.	212) 679-4666			
	<u>. </u>						()				
							()				
	- 						()				
		<u> </u>									
<u> </u>							()				
							()				
		<u> </u>			· · · · · · · · · · · · · · · · · · ·		()				
17 ACCESS GAINED BY (Check one) X PERMISSION WARRANT	8:30 a.m.	rion !	Clear and								
IV. INFORMATION AVAILA	BLE FROM										
01 CONTACT			cy/Organization)				03 TELEPI	HONE NO			
Michael Giuranna		United S Environm	tates ental Protect	ion Agend	c y		(₂₁₅)	97 -3165			
04 PERSON RESPONSIBLE FOR SITE INSPECTION FORM (b) (4) (c) (d) (d) (e) (e) (e) (e) (e) (e) (e) (e) (e) (e				06 ORGANIZATION 07 TELEPHONENO. UB DATE				12 / 92 av year			

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 2 - WASTE INFORMATION

I. IDENTIFICATION								
01 STATE	02 SITE NUMBER 2898							

			PART	2 - WAS	TE INFORM	IATI	ON		PA	2898
II. WASTE STA	TES, QUANTITIES, AND CH	ARAC	TERISTICS							
OS PHYSICAL STATES (Check all that apply) A. SOLID E. SLURRY B. POWDER, FINES C. SLUDGE G. GAS D. OTHER (Specify)		02 WASTE QUANTITY AT SITE (Measures of waste quantities must be independent) TONS <u>UNKNOWN</u> CUBIC YARDS NO. OF DRUMS				⅓ A. ⅓ B. C.	TOXIC CORROSIVE RADIOACTIVE PERSISTENT		all that apply) DLUBLE IFECTIOUS .AMMABLE .NITABLE	I. HIGHLY VOLATILE J. EXPLOSIVE K. REACTIVE L. INCOMPATIBLE M. NOT APPLICABLE
III. WASTE TYP	E									
CATEGORY	SUBSTANCE NAME		01 GROSS AMOUŅT		02 UNIT OF	MEAS	URE	03 COMMEN	TS	
SLU	SLUDGE									
OLW	OILY WASTES		unknown		On-site	50	il sample	s taken	by HALLIB	URTON NUS ARC\$ III
SOL	SOLVENTS		unknown							d levels of
PSD	PESTICIDES							1		On March 27, 1991,
occ	OTHER ORGANIC CHEMICA	LS	unknown		EPA Eme	rge	ncy Respo	nse foun	d contain	ers of various
IOC	INORGANIC CHEMICALS		unknown		hazardo	us 1	naterials	includ	ing acids	, caustics, and
ACD	ACI DS		unknown		flammab	les	, inside	the on-s	ite wareh	ouses.
BAS	BASES		unknown							_
MES	HEAVY METALS		unknown							-
IV. HAZARDOI	JS SUBSTANCES (See App	endix f	or most frequenti	y cited C	AS Number	rs)				
01 CATEGORY	02 SUBSTANCE NAME				AGE DISPOSAL METHOD		05 CONCENT	RATION	06 MEASURE OF CONCENTRATION	
SOL	toluene	10	08-88-3	on-s	site soil			1	20	ppb
OCC	fluoranthene	20	06-44-0		site soil			72,0	•	ppb
OCC	pyrene	1.2	29-00-0	on-s	site soil			54,0	00	ppb
OCC	chrysene	2:	18-01-9		n-site soil			32.0	በበ	ppb
OCC	benzo(a)pyrene	50) - 32-8	1	on-site soil			30,0		ppb
000	phenanthrene	85	5-01-8	on-si	on-site soil			52.0		ppb
000	anthracene	12	20-12-7	1	-site soil			14,0		nnh
IOC	Aroclor 1260	1	1096-82-5	T	site soil			300.0	-	ppb
MES	lead		139-92-1	1	site soil			4.8		DDM
MES	mercury		39-97-6		site soil				2_90	ppm
MES	zinc		40-66-6		ite sail			1,2	-	ppm
IOC	cyanide	1			te soil				1.8	ppm
							-		A1.U	<u> </u>
	1	1		<u> </u>						
•••		1								
IV. FEEDSTOC	KS (See Appendix for CAS	Numb	ers) N/A							
CATEGORY	01 FEEDSTOCK NAME		02 CAS NUMB	ER	CATEGOR	Y	01 FEEDSTOC	K NAME		02 CAS NUMBER
FDS :					FD\$					
FDS					FDS					
FD\$					FD5					
FDS					FD\$					
VI. SOURCES	F INFORMATION (Cite spe	cific re	ferences, e.g., sta	te files, s	ample ana	lysis	, reports)			
	N NUS, ARCS III. Si ation, FIT 3. Preli								-	992.

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 3 - DESCRIPTION OF HAZARDOUS CONDITIONS AND INCIDENTS

I. IDENTIFICATION								
D1 STATE	02 SITE NUMBER							
PA	2898							

WIGINA.

	<u> </u>	2898
II. HAZARDOUS CONDITIONS AND INCIDENTS		
01 X A GROUNDWATER CONTAMINATION 02 OBSERVED (DATE: 03 POPULATION POTENTIALLY AFFECTED: 19,500 04 NARRATIVE DESCRIPTION 0n-site soil samples taken by ARCS III on January 30, 1992 contained elevated le inorganic contaminants, including benzo(a)pyrene (30 ppm), PCBs (300 ppm), and 10,831 people use groundwater within the study area for drinking.		
01 X B. SURFACE WATER CONTAMINATION 02 X OBSERVED (DATE:)	POTENTIAL	ALLEGED
Aqueous samples from the Schuylkill River taken by ARCS III on January 30, 1992 zinc (301 J ppb), and lead (59.9 J ppb). 38,894 people obtain drinking water from the site.		
01 C. CONTAMINATION OF AIR 02 OBSERVED (DATE:)	POTENTIAL	ALLEGED
None reported or observed.		
01 D. FIRE/EXPLOSIVE CONDITIONS 02 085ERVED (DATE:)	POTENTIAL	ALLEGED
03 POPULATION POTENTIALLY AFFECTED: 04 NARRATIVE DESCRIPTION	_	_
None reported or observed.		:
01 X E. DIRECT CONTACT 02 OBSERVED (DATE:)	POTENTIAL	ALLEGED
03 POPULATION POTENTIALLY AFFECTED: 1,715/1 mile 04 NARRATIVE DESCRIPTION		
On-site soil samples taken by ARCS III on January 30, 1992 contained elevated levaled contaminants including benzo(a)pyrene (30 ppm), PCBs (300 ppm), and lead (4,810 purestricted. 1.819 people live within one mile of the site.	•	-
01 X F. CONTAMINATION OF SOIL 02 X OBSERVED (DATE:)	POTENTIAL	ALLEGED
On-site soil samples taken by ARCS III on January 30, 1992 contained elevated levaluminants, including benzo(a)pyrene (30 ppm), PCBs (300 ppm), and lead (4,810 of the site is 125 acres.		
01 X G. DRINKING WATER CONTAMINATION 02 OBSERVED (DATE:)	POTENTIAL	ALLEGED
On-site soil samples taken by ARCS III on January 30, 1992 contained elevated level contaminants, and an aqueous sample from the Schuylkill River contained cyanide (and lead (59.9 J ppb). 58,275 people obtain drinking water from either groundwat surface water within 15 miles downstream from the site.	(11.70 ppb), zin	c (301 J ppb),
01	POTENTIAL	ALLEGED
03 WORKERS POTENTIALLY AFFECTED: 04 NARRATIVE DESCRIPTION		
None reported or observed.		
D1 X I. POPULATION EXPOSURE/INJURY D2 OBSERVED (DATE:)	X POTENTIAL	ALLEGED
03 POPULATION POTENTIALLY AFFECTED: 58,394 04 NARRATIVE DESCRIPTION		
The population potentially affected by the site consists of those obtaining drink drawing from the Schuylkill River, those utilizing groundwater drawn from the stude accessing the contaminated areas of the site.		

POTENTIAL HAZARDOUS WASTE SITE

I. IDENTIFICATION		
01 STATE PΔ	02 SITE NUMBER	

PART 3 - DESCRIPTION OF HAZARDOUS CONDITIONS AND INCIDENTS	01 STATE PA	02 SITE NUMBER 2898
II. HAZARDOUS CONDITIONS AND INCIDENTS (Continued)		· · · · · · · · · · · · · · · · · · ·
01 J. DAMAGE TO FLORA 02 OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	POTENTIAL	ALLEGED
None reported or observed.		
01 X K. DAMAGE TO FAUNA 02 OBSERVED (DATE: 04 NARRATIVE DESCRIPTION (Include name(s) of species) Aqueous samples from the Schuylkill River taken by ARCS III on January 30, 1992 cozinc (301 J ppb), and lead (59.9 J ppb). The types of species potentially affected		
01 X L. CONTAMINATION OF FOOD CHAIN 02 OBSERVED (DATE:)	POTENTIAL	ALLEGED
Aqueous samples from the Schuylkill River taken by ARCS III on January 30, 1992 co zinc (301 J ppb), and lead (59.9 J ppb).	ontained cya	anide (11.7 ppb),
01 X M. UNSTABLE CONTAINMENT OF WASTES 02 X OBSERVED (DATE: 1/30/92) (Spills, Runoff, Standing liquids, Leaking drums)	POTENTIAL	ALLEGED
POPULATION POTENTIALLY AFFECTED: 1,715 04 NARRATIVE DESCRIPTION On-site soil samples taken by ARCS III on January 30, 1992 contained elevated level contaminants including benzo(a)pyrene (30 ppm), PCBs (300 ppm), and lead (4,810 ppm), 1,819 people reside within a one-mile radius.		
01 N. DAMAGE TO OFFSITE PROPERTY 02 OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION	POTENTIAL	ALLEGED
None reported or observed.		
01 O. CONTAMINATION OF SEWERS, STORM DRAINS, WWTPS 02 OBSERVED (DATE:) 04 NARRATIVE DESCRIPTION None reported or observed.	ROTENTIAL	ALLEGED
01 X P. ILLEGAL/UNAUTHORIZED DUMPING 02 X OBSERVED (DATE: 1/30/92) 04 NARRATIVE DESCRIPTION An on-site trash dump was observed by ARCS III on January 30, 1992.	POTENTIAL	ALLEGED
05 DESCRIPTION OF ANY OTHER KNOWN, POTENTIAL, OR ALLEGED HAZARDS		- · · · · · · · · · · · · · · · · · · ·
None reported or observed.		
III. TOTAL POPULATION POTENTIALLY AFFECTED: 58,394		
IV. COMMENTS		
None		
V. SOURCES OF INFORMATION (Cite specific references, e.g., state files, sample analysis, reports)		
HALLIBURTON NUS ARCS III. Site inspection; site visit. Project No. 3263-09, Janu	 uary 30, 199	12.

EP/
3 4 /

POTENTIAL HAZARDOUS WASTESITE

ı	IDENTIFICATION
	INCLIENT IN ICH I INCIE

EPA	PART 4 -	ATE 02 SITE NUMBER 2898			
II. PERMIT INFORMATION					
O1 TYPE OF PERMIT ISSUED	02 PERMIT NUMBER	03 DATE ISSUED	04 EXPIRATION DATE	05 COMMENT	s
(Check all that apply) X A. NPDES	D80012202	unknown	12/22/00	 	
B. UIC	PA0013293	unknown	12/23/88		
C. AIR				+	
D RCRA	 			 	-
E. RCRA INTERIM STATUS				 	
F. SPCC PLAN				 	
G. STATE (specify)					
H. LOCAL (specify)	f				
I. OTHER (specify)					
J. NONE					
III. SITE DESCRIPTION					
01 STORAGE/DISPOSAL (Check all that apply)	02 AMOUNT 0	3 UNIT OF MEASURE	04 TREATMENT (Check all that ap	ply)	05 OTHER
A. SURFACE IMPOUNDMENT			N/A A. INCINERATION		🕅 A. BUILDINGS ON SITE
☐ B. PILES			B. UNDERGROUND INJEC	TION	
C. DRUMS, ABOVE GROUND	75 to 100	drums	C. CHEMICAL/PHYSICAL		
💹 D. TANK, ABOVE GROUND	_21	tanks	D. BIOLOGICAL		
E. TANK, BELOW GROUND		tanks	E. WASTE OIL PROCESSIN	G	06 AREA OF SITE
F. LANDFILL			F. SOLVENT RECOVERY		
G. LANDFARM			G. OTHER RECYCLING/REG	OVERY	<u> </u>
H. OPEN DUMP	<u>unknown</u>		H. OTHER(Specify	<i>,</i>	125 (Acres)
X L OTHER <u>tanker trucks</u> (Specify)	4				
OT COMMENTS The site, abandoned since 1986, had been used as a whiskey distillery, a whiskey warehousing operation, and an antifreeze and ammonia-based cleaner repackaging operation. NUS FIT 3 recommended action by EPA Emergency Response after observing numerous drums and tanks on site during a preliminary assessment in February 1991.					
IV. CONTAINMENT					
01 CONTAINMENT OF WASTES (Check one)					
A. ADEQUATE, SECURE	B. MODERATE	X c. 1	NADEQUATE, POOR	D. INSECURE, L	INSOUND, DANGEROUS
02 DESCRIPTION OF DRUMS, DIKING, LINERS,	BARRIERS, ETC.				
No liners exist for on-site soil contamination detected by ARCS III on January 30, 1992.					
V. ACCESSIBILITY					
01 WASTEEASILY ACCESSIBLE: X YES NO 02 COMMENTS On-site surface soil contamination was detected by ARCS III on January 30, 1992. Site access is unrestricted.					
VI. SOURCES OF INFORMATION (CI	te specific references, e.g., sta	te files, sample analysis	, reports)		
NUS Corporation, FIT 3. Pr	reliminary assessm	nent. TDD No.	F3-9008-01, June 27,	1991.	
EPA file information.					
HALLIBURTON NUS ARCS III.	Site inspection;	site visit.	Project No. 3263-09,	January 30,	1992.

A EDA		POTI	ENTIAL HAZARI				I. IDENT	IFICATION	
W EPA	ORIGINAL (End) PA	IRT 5∰WATI	SITE INSPECTI ER, DEMOGRAPHIC	ION REPOR ;, AND ENVIR	T ONMENTAL	DATA	01 STATE		NUMBER 198
II. DRINKING WATER S	UPPLY								
21 TYPE OF DRINKING SUPP (Check as applicable) COMMUNIFY NON-COMMUNITY	SURFACE A. X C.	WELL 8. 🔀 0. 😨	02 STATUS ENDANGERED A	AFFECTED 9. E.	MONITORES C. F.		Approxima		_ (mi) to 200 fee _ (mi)
III. GROUNDWATER									
O1 GROUNDWATER USE IN V	OR DRINKING	B. DRINKI (Other sources a COMMERCIAL)		(Limited	COMMERCIAL fother sources	, industrial, irrig available)	ATION	D. NOT	USED, UNU S ABLÉ
02 POPULATION SERVED 8	r GROUND WATER	19,50	00	03 DISTANCE 1	O NEAREST DR	INKING WATER WE	ıı <u>100</u>	to 200	feet (mi)
D4 DEPTH TO GROUNDWAT Estimated 0 to 70		est throu	gh south	06 DEPTH TO A OF CONCERN Estimat U to 70	N	07 POTENTIAL YES	(gibal)	8 SOLE SOUR	CE AQUIFER
DESCRIPTION OF WELLS ((S)	m, and straue.	Telative to population	no punon ryes					
10 RECHARGE AREA	- Consumula			11 DISCHARGE	1				
	NTS: GroundW pitation that ock to satura	t infiltra	narge from ates site soils	X YES □ NO	COMMENT Expecte	s ed groundwat	er discha	rge to Sc	huy]ki]]Ri
IV. SURFACE WATER	_								
31 SURFACE WATER USE IN X A. RESERVOIR REC	REATION		RIGATION, ECONOMICAL PORTANT RESOURCES	.LY [□ с. сомм	ERCIAL, INDUSTRIAL	. [D. NOTC	JRRENTLY USED
NAME: Schuylkill		IF WATER			AFFECT	<u></u>	DISTANCE T	O SITE	(mi)
V. DEMOGRAPHIC AN	D PROPERTY IN	FORMATIO				<u></u>			(mi)
01 TOTAL POPULATION WITH						02 DISTANCE TO 6	IEAREST POPUL	ATION	
ONE (1) MILE OF SITE A. 1,819 NO. OF PERSONS	B	WO (2) MILES O	5 c.	18,308 NO. OF PERSON		< 0.	1		(mi)
03 NUMBER OF BUILDINGS	WITHIN TWO (2) MIL 4,647	.ES QF SITE		04 DISTANCE I		F-SITE BUILDING		(mi)	

os population within vicinity of site (Provide narrative description of nature of population within vicinity of site, e.g., rural, village, densely populated urban area)

The residential town of Linfield is adjacent to and north-northeast of the site. The residential towns of Parker Ford and Pennhurst are across the Schuylkill River from the site to the west and south, respectively.

EPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 5 - WATER, DEMOGRAPHIC, AND ENVIRONMENTAL DATA

		Alliter.
I. IDENTIFIC		(EFF)
01 STATE	02 SITE NUMBER	
B PA I	2808	

		, Deliver the, Al		<u> </u>	2898
VI. ENVIRONMENTAL INFOR	MATION				
-01 PERMEABILITY OF UNSATURATE	D ZONE (Check one)				
☐ A. 10 ⁻⁶ — 10 ⁻⁸ cm/sec	□ s. 10-4 - 10-6 a	cm/sec 🔲 c. 1	0-4 – 10-3 cm/sec	D. GREATER THAN	10-3 cm/sec
02 PERMEABILITY OF BEDROCK (Ch	eck one)		10 ⁻³ to	10 ⁻⁵ cm/sec	
A. IMPERMEABLE (Less than 10 ⁻⁶ cm/sec)	B. RELATIVE	ELY IMPERMEABLE 0 ⁻⁶ cm/sec)	C. RELATIVELY	Y PERMEABLE 0. V	/ERY PERMEABLE greater than 10 ⁻² cm/sec)
03 DEPTH TO BEDROCK Approximately 0 to 15 (ft)	04 DEPTH OF CONTAMIN. <u>un</u> kt		05 SOIL рН <u>4.5</u> t	0 7.0	
06 NET PRECIPITATION	07 ONE-YEAR 24-HOUR RAIN	SFALL	08 SLOPE		
11 5	2.5		SITE SLOPE	DIRECTION OF SITE SLOPE	TERRAIN AVERAGE SLOPE
(in)	2.5	(in)	10 %	southwest	10%
99 FLOOD POTENTIAL SITE IS IN	YEAR FLOOD PLAIN	10 N/A SITE IS ON BA	ARRIER ISLAND, COASTAL	HIGH HAZARD AREA, RIVERINE F	:LQQDWAY
11 DISTANCE TO WETLANDS (5-acre	minimum)		12 DISTANCE TO CRITICA	AL HABITAT (of endangered spec	ues)
ESTUARINE	. 01	HER	N/A		(mı)
A N/A	(mi) 8 () . 1 (mi)	ENDANGERED SPECIE	ES:	
DISTANCE TO RESIDENTIAL AREAS: NATIONAL/STATE PARKS, COMMERCIAL/INDUSTRIAL A. 0.5 (mi) B. < 0.1 (mi) C. UNKNOWN (mi) D. (mi) The site lies within a meander of the Schuylkill River, which borders the site to the west and south and is approximately 2,500 feet to the east.					
VII. SOURCES OF INFORMATION OF STATE OF				June 27, 1991.	

(Red)

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 6 - SAMPLE AND FIELD INFORMATION

I. IDENTIFICATION				
01 STATE	02 SITE NUMBER 2898			

II. SAMPLES TAKEN					
SAMPLE TYPE	01 NUMBER OF SAMPLES TAKEN	02 SAMPLES SENT TO			03 ESTIMATED DATE RESULTS AVAILABLE
GROUNDWATER	3	Organic: Compuc	nem Inorganic:	Keytx	current
SURFACE WATER	6	Organic: Compuc	nem Inorganic:	Keytx	current
WASTE					
AIR					
RUNOFF					
SPILL			-		
SOIL	14	Organic: Compuc	them Inorganic:	Keytx	current
VEGETATION					
OTHER	<u> </u>				
III. FIELD MEASURE	MENTS TAKEN	· · · · · · · · · · · · · · · · · · ·			
OT TYPE	. .	02 COMMENTS			
На		Surface water pH	levels ranged from 6.	70 to 6.97.	
					<u></u>
HNU		No readings above	background were reco	rded.	<u> </u>
Mini-Alert		No readings above	background were reco	rded.	<u> </u>
IV. PHOTOGRAPHS	AND MAPS				
01 TYPE X GROUND AERIAL 02 IN CUSTODY OF U.S. EPA (Name of organization or individual)					
03 MAPS	04 LOCATION OF MAPS				
X YES HALLIBURTON NUS ARCS III					
V. OTHER FIELD DA	TA COLLECTED (Provide na	rrative description)			
N/A					
		ferences, e.g., state files, sample			
			e analysis, reports) Sit. Project No. 3263	-09, January 30, 19	992.
				-09, January 30, 19	992.
				-09, January 30, 19	992.

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 7 - OWNER INFORMATION

	WILE
I. IDENTIFIC	ATION 1/2/
O1 STATE	02 SITE NUMBER 2898

							030
II. CURRENT OWNER(S)				PARENT COMPANY (if applic	able)		
01 NAME		02	O & B NUMBER	10 NAME		11	D & B NUMBER
888 Warehousing, Incorporated		1		İ		ì	
03 STREET ADDRESS (P.O. Box, RFD #, Etc.) 527 Redford Avenue			04 SIC CODE	12 STREET ADDRESS (P.O. Box, RFD) #, Etc.)	-	13 SIC CODE
os city Brooklyn	06 STATE		ZIP CODE	14 CITY	15 STATE	16	ZIP CODE
01 NAME		02	D & B NUMBER	IQ NAME		11	O & 8 NUMBER
03 STREET ADDRESS (P.O. Box, RFD #, Etc.)		_!	04 SIC CODE	12 STREET ADDRESS (P.O. Box, RFI	D #, Etc.)		13 SIC CODE
05 CITY	06 STATE	07	ZIP CODE	14 CITY	15 STATE	16	ZIP CODE
01 NAME		02	D & 6 NUMBER	10 NAME		11	D & B NUMBER
03 STREET ADDRESS (P.O. Box, RFD #, Etc.)			04 SIC CODE	12 STREET ADDRESS (P.O. Box, RFI	D #, Etc.)	<u> </u>	13 SIC CODE
Q5 CITY	06 STATE	07	ZIP CODE	14 CITY	15 STATE	16	ZIP CODE
01 NAME		02	D & 8 NUMBER	10 NAME		11	D & B NUMBER
03 STREET ADDRESS (P.O. Box, RFD #, Etc.)			04 SIC CODE	12 STREET ADDRESS (P.O. BOX, RF.	O #, Etc.)		13 SIC CODE
OS CITY	Q6 STATE	07	ZIP CODE	14 CITY	15 STATE	16	ZIP CODE
III. PREVIOUS OWNERS(S) (List most recent s	first)	<u> </u>		IV. REALTY OWNER(S) (if ap	oplicable, list most recent first)	· · ·	
01 NAME Publicker Industries, Incorpor	ated	02	D & B NUMBER	10 NAME		11	O & B NUMBER
03 STREET ADDRESS (P.O. Box, RFD ≠, Etc.) 777 West Putnam Avenue			04 SIC CODE	12 STREET ADDRESS (P.O. Box, RFE	7 #, Etc.}		13 SIC CODE
05 CITY	06 STATE	07	ZIP CODE	14 CITY	15 STATE	16	ZIP CODE
Greenwich	СТ	1	06836			1	
01 NAME		0.5	D & 6 NUMBER	10 NAME	<u>+</u>	11	O & B NUMBER
03 STREET ADDRESS (P.O. Box, RFD #, Etc.)	· · · · · · · · · · · · · · · · · · ·	<u> </u>	04 SIC COD€	12 STREET ADDRESS (P.O. Box, RFD) #, Etc.)		13 SIC CODE
05 CITY	Q6 STATE	07	ZIP CODE	14 CiTY	t5 STATE	16	ZIP CODE
01 NAME	<u>.1</u> .	02	D & B NUMBER	10 NAME		11	D & B NUMBER
03 STREET ADDRESS (P.O. Box, RFD #, Etc.)			04 SIC CODE	12 STREET ADORESS (P.O. Box, RFD) #, Etc.)		13 SIC CODE
05 CITY	Q6 STATE	102	ZIP COD€	14 CITY	15 STATE	3,6	ZIP CODE
	OD SIMIE	<u>"</u>	ZIF COUE		13 STATE	'°	cir CODE
IV. SOURCES OF INFORMATION (Cite speci	fic references, e.ç	,, state	files, sample anal	ysis, reparts)	· · · · · · · · · · · · · · · · · · ·		
NUS Corporation, FIT 3. Preli	minary ass	essm	ent. TDD 1	lo. F3-9008-01, June 2	7, 1991.	•	

EPA ORIGINAL POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

I. IDENTIFICATION			
01 STATE	02 SITE NUMBER		

	fuent	PAF	RT 8 - OPERAT	OR INFORMATION	PA	2898	
II. CURRENT OPERATOR (Provide if dif	fferent from owner)	•		OPERATOR'S PARENT COMPANY (if applicable)			
01 NAME		02 [D & B NUMBER	10 NAME		11 D&BNUMBER	
N/A				N/A			
03 STREET ADDRESS (P.O. Box, RFD #, Etc.)			04 SIC CODE	12 STREET ADDRESS (P.O. Box, RFD #, Etc.)		13 SIC CODE	
05 CITY	Q6 STATE	07	ZIP CODE	14 CITY	15 STATE	16 ZIP CODE	
08 YEARS OF OPERATION 09 NAM	ME OF OWNER	1					
III. PREVIOUS OPERATOR (S) (List mo	ost recent first; provide if	differe	nt from owner)	PREVIOUS OPERATOR'S PAI	RENT COMPANIE	5 (if applicable)	
01 NAME		02 (D & Ø NUMBER	10 NAME		11 D&BNUMBER	
N/A				N/A			
03 STREET ADDRESS (P.O. Box, RFD #, Etc.)			04 SIC CODE	12 STREET ADDRESS (P.O. Box, RFD #, Etc.)		13 SIC CODE	
05 CITY	06 STATE	07	ZIP CODE	14 CITY	15 STATE	16 ZIP CODE	
08 YEARS OF OPERATION 09 NAM	ME OF OWNER	•					
01 NAME 0		02	O & 8 NUMBER	10 NAME		11 O & B NUMBER	
03 STREET ADDRESS (P.O. Box, RFD #, Etc.)			04 SIC CODE	12 STREET ADDRESS (P.O. Box, RFD #, Etc.)		13 SIC CODE	
OS CITY	Q6 STATE	07	ZIP CODE	14 CITY	15 STATE	16 ZIP CODE	
08 YEARS OF OPERATION 09 NAM	ME OF OWNER	•					
01 NAME		02	D & B NUMBER	10 NAME		11 D&B NUMBER	
03 STREET ADDRESS (P.O. Box, RFD #, Etc.)		<u> </u>	04 SIC CODE	12 STREET ADDRESS (P.O. Box, RFD #, Etc.,)	13 SIC CODE	
05 CITY	06 STATE	07	ZIP CODE	t4 CITY	15 STATE	16 ZIP CODE	
08 YEARS OF OPERATION 09 NAME OF OWNER		<u>/</u>		<u> </u>			
IV. SOURCES OF INFORMATION (GI	te specific references, e.g	., state	files, sample analy	sis, reports)			

NUS Corporation, FIT 3. Preliminary assessment. TDD No. F3-9008-01, June 27, 1991.

EPA

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT BART 9. GENERATOR TRANSPORTER INFORMATION

I. IDENTIFICATION			
01 STATE	02 SITE NUMBER		

	PARI:	7 - GE	MERAIUNIK	ANSPORTER INFORMATION	PA I		2898
. ON-SITE GENERATOR			· · · · · · · · · · · · · · · · · · ·		<u> </u>	ORIGI (Fire	NA
NAME		02	O & B NUMBER			-{hire	4)
3 STREET ADDRESS (P.O. Box, RFD #, Etc.)			04 SIC CODE				
S CITY	06 STATE	07	ZIP CODE				
II. OFF-SITE GENERATOR(S)		<u> </u>		<u></u>	 		
I NAME	· · · · · · · · · · · · · · · · · · ·	02	O & B NUMBER	01 NAME	.	02	O & B NUMBE
N/A							
33 STREET ADDRESS (P.O. Box, RFD #, Etc.)			04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFD #, Etc.)	· · · 		04 SIC COD
OS CITY	06 STATE	07	ZIP CODE	05 CITY	O6 STATE	07	ZIP CODE
D1 NAME		02	D & B NUMBER	01 NAME		02	D & B NUMBE
N/A	<u></u>	L			*		
3 STREET ADDRESS (P.O. Box, RFD #, Etc.)			04 SIC CODE	03 STREET ADDRESS (P.O. 80x, RFD #, Etc.)			04 SIC COL
OS CITY	O6 STATE	07	ZIP CODE	OS CITY	06 STATE	07	ZIP CODE
IV. TRANSPORTER(5)		•				<u> </u>	
) NAME		02	D & B NUMBER	01 NAME		02	O & B NUMBE
N/A		<u> </u>					
3 STREET ADDRESS (P.O. 80x, RFD #, Etc.)			04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFD #, Etc.)			04 SIC COD
DS CITY	06 STATE	Q7	ZIP CODE	OS CITY	06 STATE	07	ZIP CODE
) NAME		02	D & B NUMBER	01 NAME	<u> </u>	02	D & B NUMBE
3 STREET ADDRESS (P.O. Box, RFD #, Etc.)		<u>!</u>	04 SIC CODE	03 STREET ADDRESS (P.O. Box, RFD #, Etc.)		<u></u>	04 SIC COD
IS CITY	06 STATE	07	ZIP CODE	05 CITY	06 STATE	07	ZIP CODE
V. SOURCES OF INFORMATION (Cite spe	cific references, e.g.	. state	files, sample analy	rsis, reports)			
NUS Corporation, FIT 3. Prel	iminary ass	essm	ent. TDD N	io. F3-9008-01, June 27, 199	1.		

\$	EPA	ORIGINAL (Red)
		(Red)

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT PART 10 - PAST RESPONSE ACTIVITIES

I. IDENTIFICATION			
Q1 STATE	02 SITE NUMBER		
PA	2898		

(Red)		PA	2898
H. PAST RESPONSE ACTIVITIES			
01 A. WATER SUPPLY CLOSED 04 DESCRIPTION N/A	Q2 DATE	03 AGENCY	· · · · · · · · · · · · · · · · · · ·
01 B. TEMPORARY WATER SUPPLY PROVIDED 04 DESCRIPTION	OZ DATE	03 AGENCY	
N/A	·		
01 C. PERMANENT WATER SUPPLY PROVIDED 04 DESCRIPTION N/A	02 · DATE	03 AGENCY	
01 D. SPILLED MATERIAL REMOVED 04 DESCRIPTION	D2 DATE	03 AGENCY	<u> </u>
N/A			
01 E. CONTAMINATED SOIL REMOVED 04 DESCRIPTION	02 DATE	03 AGENCY	-
N/A			
01 F. WASTE REPACKAGED 04 DESCRIPTION N/A	02 DATE	03 AGENCY	
01 G. WASTE DISPOSEO ELSEWHERE	02 DATE	03 AGENCY	
04 DESCRIPTION N/A			
01 H. ON-SITE BURIAL 04 DESCRIPTION	02 DATE	03 AGENCY	
N/A			
01 . IN SITU CHEMICAL TREATMENT 04 DESCRIPTION	02 DATE	03 AGENCY	
N/A			
01 J. IN SITU BIOLOGICAL TREATMENT 04 DESCRIPTION	02 DATE	03 AGENCY	
N/A			
01 K IN SITU PHYSICAL TREATMENT 04 DESCRIPTION N/A	02 DATE	03 AGENCY	
01 L. ENCAPSULATION			
Q4 DESCRIPTION	02 DATE	03 AGENCY	
N/A			
01 M. EMERGENCY WASTE TREATMENT 04 DESCRIPTION	U2 DATE	03 AGENCY	
N/A			
01 N CUTOFF WALLS 04 DESCRIPTION	02 DATE	03 AGENCY	
N/A			
01 O EMERGENCY DIKING/SURFACE WATER DIVERSION 04 DESCRIPTION	02 DATE	03 AGENCY	
N/A			
04 DESCRIPTION	O2 DATE	03 AGENCY	
N/A			
01 Q. SUBSURFACE CUTOFF WALL 04 DESCRIPTION	02 DATE	03 AGENCY	
N/A			

EP

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT

ı.	IDEN	TIFICA	TION
••	100		

EPA	PART 10 - PAST RESPONSE ACTIVITIES	O1 STATECT SC 202 SITE NUMBER PAZ: 2898
H. PAST RESPONSE ACTIVITIES (Continue	ed)	AMARIA
01 R. BARRIER WALLS CONSTRUCTED 04 DESCRIPTION	02 DATE	03 AGENCY
N/A 01 S. CAPPING/COVERING	02 DATE	03 AGENCY
04 DESCRIPTION N/A		
01 T. BULK TANKAGE REPAIRED 04 DESCRIPTION N/A	02 DATE	03 AGENCY
01 U. GROUT CURTAIN CONSTRUCTED 04 DESCRIPTION N/A	02 DATE	03 AGENCY
01 V. BOTTOM SEALED 04 DESCRIPTION N/A	02 DATE	03 AGENCY
01 W. GAS CONTROL 04 DESCRIPTION N/A	02 DATE	03 AGENCY
01 X. FIRE CONTROL 04 DESCRIPTION N/A	02 DATE	03 AGENCY
01 Y. LEACHATE TREATMENT 04 DESCRIPTION N/A	02 DATE	03 AGENCY
01 Z. AREA EVACUATED 04 DESCRIPTION N/A	02 DATE	03 AGENCY
01 1 ACCESS TO SITE RESTRICTED 04 DESCRIPTION N/A	DZ DATE	03 AGENCY
01 2. POPULATION RELOCATED 04 DESCRIPTION N/A	02 DATE	03 AGENCY
01 3. OTHER REMEDIAL ACTIVITIES 04 DESCRIPTION N/A	02 DATE	03 AGENCY
III. SOURCES OF INFORMATION (Gite specific	c references, e.g., state files, sample analysis, reports)	
NUS Corporation, FIT 3. Prelim	ninary assessment. TDD No. F3-9008-01, June 2	7, 1991.

EPA

ORIGINAL

POTENTIAL HAZARDOUS WASTE SITE SITE INSPECTION REPORT ... PART 11 - ENFORCEMENT INFORMATION

IDENTIFICATION			
02 SITE NUMBE			

II. ENFORCEMENT INFORMATION

01 PAST REGULATORY ACTION	X YES NO	

02 DESCRIPTION OF FEDERAL, STATE, LOCAL REGULATORY/ENFORCEMENT ACTION

On September 5, 1972, the facility was found to be in violation of the Clean Streams Law by the Pennsylvania Department of Environmental Resources after an inspection revealed several discharges to the Schuylkill River without a permit. These discharges included deionized wastewater, cooling water, sink wastewater, water softener waste, and septic tank seepage.

An October 31, 1973 PA DER inspection found the facility still in violation of the Clean Streams Law.

On February 8, 1974, the facility was fined \$250 by PA DER for violations of the Clean Streams Law.

On April 12, 1975, a PA DER inspection found that the facility's septic system was overflowing. Two discharges from the site were sampled and analyzed. Both contained unacceptable BOD levels and one contained ethyl glycol alcohol. This was a violation of the Clean Streams Law.

In a March 19, 1976 administrative conference with the facility, PA DER required the pumping of the existing septic tank as soon as the new tile field was in operation and the submission of a NPDES permit application.

On July 13, 1979, PA DER required the facility to submit a permit for the discharges to groundwater via a limestone pit.

On April 27, 1983, a PA DER inspection revealed the discharge of non-contact compressor cooling water to a storm sewer tributary to the Schuylkill River.

On December 6, 1984, PA DER conducted an inspection of the facility in response to citizens' complaints of eye and nasal irritation caused by the cooling water discharge. The inspection revealed that the facility was processing an ammonia-based cleaner. A sample of the discharge contained 5 ppb phenol and a BOD concentration greater than 405 ppm. On May 8, 1985, PA DER found the facility in violation of its NPDES permit when a sample of the non-contact cooling water discharge contained a BOD concentration of 11.5 ppm.

On August 13, 1985, PA DER found the facility to be in violation of the Clean Streams Law because of various potential sources of pollution at the site that could impact the NPDES discharge.

On March 14 and 27, 1991, EPA Emergency Response performed a removal site inspection after NUS Corporation, FIT 3 found numerous tanks and drums on site during a preliminary assessment on February 19, 1991. Many of the drums observed by the FIT (approximately 75; 25 contained material) had been moved into an on-site warehouse by the site owner. The large on-site holding tanks were found to be empty. Numerous drums and containers were observed inside the various buildings. No removal or enforcement action was performed. The OSC planned to work with the site owner to address safety concerns posed by the unrestricted site access and the materials haphazardly stored on site.

III. SOURCES OF INFORMATION (Cite specific references, e.g., state files, sample analysis, reports)

NUS Corporation, FIT 3. Preliminary assessment. TDD No. F3-9008-01, June 27, 1991. EPA file information.

SECTION 6.0

Site Name: TDD No.:

Linfield Industrial Park

nzinene Prod

3263-09

6.0 REFERENCES FOR SECTIONS 1.0 THROUGH 5.0

- United States Geological Survey. Phoenixville, Pennsylvania Quadrangle, 7.5 Minute Series.
 <u>Topographic Map</u>. 1955, photorevised 1983. Combined with Collegeville, Pennsylvania
 Quadrangle, 7.5 Minute Series. <u>Topographic Map</u>. 1966, photorevised 1983; Pottstown,
 Pennsylvania Quadrangle, 7.5 Minute Series. <u>Topographic Map</u>. 1956, photorevised 1968 and
 1973; and Sassamansville, Pennsylvania Quadrangle, 7.5 Minute Series. <u>Topographic Map</u>.
 1957, photorevised 1990.
- 2. HALLIBURTON NUS Environmental Corporation, FIT 3. Preliminary Assessment. TDD No. F3-9008-01, June 27, 1991.
- 3. NUS Corporation, FIT 3. Site discovery report; Township of Limerick. TDD No. F3-9003-06, June 22, 1990.
- HALLIBURTON NUS Environmental Corporation. Site inspection; site visit. Project No. 3263-09, January 30, 1992.
- 5. Oestreicher, Eugene, Linfield Industrial Park, with (b) (4) NUS FIT 3. Telecon. January 23, 1991.
- 6. Herman, David L., Publicker Industries, Incorporated, to Joseph A. Feola, Pennsylvania Department of Environmental Resources. Correspondence. June 9, 1986.
- Bretherick, Robert P., Publicker Packaging Services, Division of Publicker Industries, Incorporated, to Marilyn Shup, Pennsylvania Department of Environmental Resources. Correspondence. September 9, 1985.
- 8. Paly, John F., Pennsylvania Department of Environmental Resources, to H.E. Huber, Continental Distilling Corporation. Correspondence. September 5, 1972.
- Laregrina, James, Pennsylvania Department of Environmental Resources, to Robert Bretherick, Publicker Industries, Incorporated. Correspondence. January 22, 1985.

R-51-5-2-15 6-1

Site Name: TDD No.: **Linfield Industrial Park**

3263-09

 Pennsylvania Department of Environmental Resources, to Lee Vernon, Publicker Industries, Incorporated. Correspondence. January 22, 1974.

- 11. Simple, Andrew K., Pennsylvania Department of Environmental Resources, to Lee Vernon, Continental Distilling Corporation. Correspondence. February 27, 1974.
- 12. Minkle, Richard L., Pennsylvania Department of Environmental Resources, to Richard Grace, Continental Distilling Corporation. Correspondence. February 10,1975.
- 13. Manley, Guy B., Pennsylvania Department of Environmental Resources, to Harold Grams, Continental Distilling Corporation. Correspondence. July 10, 1975.
- 14. Porteous, Andrew, Editor. <u>Dictionary of Environmental Science and Technology</u>.

 Buckingham, England: Open University Press, 1991.
- 15. Manley, Guy B., Pennsylvania Department of Environmental Resources, to Howard Grace, Continental Distilling Corporation. Correspondence. March 24, 1976.
- 16. Manley, Guy B., Pennsylvania Department of Environmental Resources, to Howard Grace, Continental Distilling Corporation. Correspondence. April 6, 1976.
- 17. Pennsylvania Department of Environmental Resources, to Continental Distilling Corporation. Correspondence. July 13, 1979.
- 18. Strautins, Mary, Pennsylvania Department of Environmental Resources, to Continental Distilling Corporation. Correspondence. January 11, 1983.
- 19. Pennsylvania Department of Environmental Resources, to Joseph Trisch, Publicker Industries. Correspondence. May 5, 1973.
- 20. Laregrina, James, Pennsylvania Department of Environmental Resources, to Robert Bretherick, Publicker Industries, Incorporated. Correspondence. January 22, 1985.
- 21. Laregrina, James, Pennsylvania Department of Environmental Resources, to Robert Bretherick, Publicker Industries, Incorporated. Correspondence. May 8, 1985.

R-51 5 ? 15 6-2

Linfield Industrial Park Site Name: 3263-09

TDD No.:

22. Shup, Marilyn, Pennsylvania Department of Environmental Resources, to Robert Bretherick, Publicker Industries, Incorporated. Correspondence. August 13, 1985.

- 23. Shaner, Donald, Pennsylvania Department of Environmental Resources, to Publicker Packaging Service. Correspondence. May 11, 1987.
- 24. Powell, M., United States Environmental Protection Agency, Emergency Response Section. POLREP No. 1, Linfield Industrial Park Assessment. March 15, 1991.
- 25. Matlock, D., EPA Emergency Response Section. POLREP No. 2, Linfield Industrial Park, March 29, 1991.
- 26 Powell, Marty, United States Environmental Protection Agency, Emergency Response Section, , HALLIBURTON NUS ARCS III. Telecon. March 12, 1992.
- 27. Shup, Marilyn, Pennsylvania Department of Environmental Resources, to Robert Bretherick, Publicker Industries, Incorporated. Correspondence. August 13, 1985.
- 28. Grace, Howard, Continental Distilling Corporation, to Guy E. Manley, III, Pennsylvania Department of Environmental Resources. Correspondence. July 14, 1975.
- 29. Bretherick, Robert P., Publicker Packaging Services, to John Minahan, Pennsylvania Department of Environmental Resources. Correspondence. December 23, 1985.
- 30. Montgomery County Planning Commission. 1986 Existing Water Facilities Map, Montgomery County, Pennsylvania. 1986.
- 31. Montgomery County Planning Commission. Water Service Plan. February 1979.
- 32. Chester County Planning Commission. Community Facilities Inventory, Chester County, Pennsylvania. Volume 2, Water Facilities. December 1985.
- 33. Crossman, Gary, Citizens' Utilities Home Water Company, with (b) (4) , NUS FIT 3. Telecon. March 9, 1990.

6-3 R-51-5-2-15

Site Name:

Linfield Industrial Park

TDD No.:

3263-09

BREET FA

34. Crossman, Gary, Citizens' Utilities Home Water Company, with (b) (4) NUS FIT 3. Telecon. September 12, 1989.

- 35. Pennsylvania Department of Environmental Resources, State Water Plan Division, Water Use Data System. Public Water Supply Facility Records, Citizens' Utilities Home Water Company, Report Year 1989. November 20, 1991.
- Pennsylvania Department of Environmental Resources, Bureau of Topographic and Geologic
 Survey. <u>Atlas of Preliminary Geologic Quadrangle Maps of Pennsylvania</u>. Map 61, 1981.
- 37. Federal Reporting Data Systems. Community Public Water Suppliers in Region III. April 1988.
- 38. Pennsylvania Department of Environmental Resources, State Water Plan Division, Water Use Data System. Public Water Supply Facility Records, Pottstown Water Authority, Report Year 1987. November 20, 1991.
- 39. (b) (6), Water Plant Employee, Borough of Phoenixville Water System, with (b) (4) NUS FIT 3. Telecon. May 23, 1990.
- 40. Pennsylvania Department of Environmental Resources, State Water Plan Division. Water Use Data System, Public Water Supply Facility Records, Phoenixville Municipal Waterworks, Report Year 1989. November 20, 1991.
- 41. Pennsylvania Department of Environmental Resources, State Water Plan Division. Water Use Data System, Public Water Supply Facilities Records, Philadelphia Suburban Water Company, Report Year 1990. April 6, 1992.
- 42. Philadelphia Suburban Water Company. Water Our Most Precious Resource. April 1987.
- 43. Luteweiler, Preston, Philadelphia Suburban Water Company, with (b) (4) NUS FIT 3. Meeting. June 28, 1990.
- 44. Luteweiler, Preston, Philadelphia Suburban Water Company, with (b) (4) NUS FIT 3. Telecon. January 2, 1991.

Site Name: <u>Linfield Industrial Park</u>

TDD No.: 3263-09

45. Luteweiler, Preston, Philadelphia Suburban Water Company, with (b) (4) NUS FIT 3. Telecon. November 27, 1990.

- 46. Keily, Tom, Philadelphia Suburban Water Company, with (b) (4) NUS FIT 3. Telecon.

 March 9, 1990.
- 47. Pennsylvania Department of Environmental Resources. Groundwater Inventory System, Montgomery County. August 1983.
- 48. Pennsylvania Department of Environmental Resources. Title 25. Rules and Regulations, Part 1, Subpart C. Protection of Natural Resources. Article 11, Water Resources. Chapter 93, Water Quality Standards. March 25, 1989.
- Voytik, A., T.E. White, D.W. Speight, and K.P. Gillespie, United States Geological Survey.
 Water Resources Data; Pennsylvania Water Year 1982. Volume 1, Delaware River Basin.
 United States Geological Survey Water Data Report PA-82-1, 1982.
- United States Department of the Interior, Fish and Wildlife Service. Phoenixville,
 Pennsylvania Quadrangle, 7.5 Minute Series. <u>Map of Flood Prone Areas</u>. 1973.
- 51. United States Department of the Interior, Fish and Wildlife Service. Phoenixville, Pennsylvania Quadrangle, 7.5 Minute Series. <u>National Wetlands Inventory Map</u>. March 1980.
- 52. Newport, Thomas G., Pennsylvania Department of Environmental Resources, Bureau of Topographic and Geologic Survey. Groundwater Resources of Montgomery County, Pennsylvania. Water Resource Report 29, 1973.
- 53. McCreery, Laurence J., and Ronald A. Sloto, United States Geological Survey. Groundwater Resources of Chester County, Pennsylvania. Water Resources Investigation 77-67, Open-File Report, September 1977.
- 54. Longwill, Stanley M., and Charles R. Wood, Pennsylvania Department of Internal Affairs, Topographic and Geologic Survey. Groundwater Resources of the Brunswick Formation in Montgomery and Berks Counties, Pennsylvania. Groundwater Report W22, 1965.

R-51:5-2:15 **6-5**

3263-09

55. Rima, Donald R., et al., Pennsylvania Department of Internal Affairs, Topographic and Geologic Survey. Geology and Hydrology of the Stockton Formation in Southeastern Pennsylvania. Bulletin W-14, 1962.

而發展時期標。

- 56. Berg, Thomas M., et al., Pennsylvania Department of Environmental Resources, Bureau of Topographic and Geologic Survey. Stratigraphic Correlation Chart of Pennsylvania. General Geology Report 75, 1983.
- 57. Hall, George M., Pennsylvania Department of Environmental Resources, Bureau of Topographic and Geologic Survey. Groundwater in Southeastern Pennsylvania. Water Resource Report 2, 1973.
- 58. Glaeser, J. Douglas, Pennsylvania Department of Environmental Resources, Bureau of Topographic and Geologic Survey. Provenance, Dispersal, and Depositional Environments of Triassic Sediments in the Newark-Gettysburg Basin. General Geology Report 43, 1966.
- 59. Geyer, Alan R., and J. Peter Wilshusen, Pennsylvania Department of Environmental Resources, Bureau of Topographic and Geologic Survey. Engineering Characteristics of the Rocks of Pennsylvania. Environmental Geology Report 1, 1982.
- 60. Pennsylvania Department of Environmental Resources, Bureau of Topographic and Geologic Survey. Geologic Map of Pennsylvania. Map 1, 1980.
- 61. United States Department of Agriculture, Soil Conservation Service. <u>Soil Survey of Montgomery County, Pennsylvania</u>. 1967.
- 62. Wood, Charles R., Pennsylvania Department of Environmental Resources, Bureau of Topographic and Geologic Survey. Groundwater Resources of the Gettysburg and Hammer Creek Formations, Southeastern Pennsylvania. Water Resource Report 49, 1980.
- 63. National Oceanic and Atmospheric Administration. <u>Climatography of the United States</u>.

 No. 20, Climatic Summaries for Selected Sites, 1951 until 1980. National Climatic Data Center.

 Asheville, North Carolina, Undated.

Site Name: TDD No.:

Linfield Industrial Park

3263-09

64. United States Department of Commerce. <u>Climatic Atlas of the United States</u>. Mean Annual Evaporation. National Climatic Center. Asheville, North Carolina, 1979.

- 65. Uncontrolled Hazardous Waste Site Ranking System; A User's Manual. One-Year, 24-Hour Rainfall, page 33 (figure 8). August 1982.
- 66. United States Department of Commerce. Rainfall Frequency Atlas of the United States for Durations from 30 Minutes to 24 Hours and Return Periods from One to 100 Years. Technical Paper No. 40, 1963.
- 67. Kulp, Charles J., United States Department of the Interior, Fish and Wildlife Service, to (b) (4) (b) (4), NUS FIT 3. Correspondence. August 29, 1990.

6-7

SECTION 7.0

Linfield Industrial Park

Project No.: 326

7.0 LABORATORY DATA

7.1 SAMPLE DATA SUMMARY

The attached data summary contains only analytes which were identified as detected in at least one sample. The complete list of compounds analyzed for, their results, and the associated detection limits are located as an appendix. Results for tentatively identified compounds appear following the organic data section of this report.

The following codes are used in the data summary to indicate the confidence in the laboratory results:

CODES RELATING TO IDENTIFICATION

(confidence concerning presence or absence of analytes):

U = Not detected. The associated number indicates approximate sample concentration necessary to be detected.

(NO CODE) = Confirmed identification.

B = Not detected substantially above the level reported in laboratory or field blanks.

R = Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.

N = Tentative identification. Consider present. Special methods may be needed to confirm its presence or absence in future sampling efforts.

CODES RELATED TO QUANTITATION

(can be used for both positive results and sample quantitation or detection limits):

J = Analyte present. Reported value may not be accurate or precise.

K = Analyte present. Reported value may be biased high. Actual value is expected to be lower.

L = Analyte present. Reported value may be biased low. Actual value is expected to be higher.

UI = Not detected, quantitation or detection limit may be inaccurate or imprecise.

UL = Not detected, quantitation or detection limit is probably higher.

OTHER CODES

Q = No analytical result.

R 51-5-2-15 7-1

STATE/COUNTY CODE: EPA NUMBER: SAMPLING DATE(S): 1/28/92 CASE NUMBER:17744

Linfield Industrial Park F3-3253-89

PA-091 2898

DITCH; 30 F7 FROM CONFL. 1.00 J 150.001 53.00 B ON-SITE ORAN 100.001 I/ SCHUYL.R. 87,008 87,008 54,008 72,004 110.00J 91.007 \$0,18 16.00 9 9 SP-3 3 CH.13 AT FORMER NPDES DISCHG 79.00 B 320.00 J 76.00 B 76.00 B 350.00 8 250.00 J 170.00 J 180.00J 86.00J OH SCHUYL.R. 15.00. 75.00. 46.0% 88.00B 95.00B 87.60J 150.001 MID-STREAM . . CHY12 ž NONE NONE 1800.00 1200.00 170.00J SCHUYLKILL R Under hash 2309.00 1806.00 280.00 B 120.004 180.00 8 270.001 UPSTREAM ON 90,08 50.008 54.008 100.001 160.001 71.0x 550.007 250.003 31. BR10GE 2900.00 <u>=</u> -180.00 CHY24 AQUEOUS BLANK CH 24 ž CAY10 SW-6 DUPLICATE OF SW-4 SAME LOCATION AS 8 CHY10 EX S /60 CHYOS SN-5 CUHNC; SCHUY LKILL RIVER INTAKE, ACRO SS FROM SITE 13.008 34.00 B S 33 CHYDB SW-4 DOWNSTREAM SAMPLE FROM SCHUYLKILL 22.009 <u>.</u> Silve CHY06 RIVER CHYOT SW-3 ONSITE DRAIN AGE DITCH;30 FEEF FROM CO NFL,N/SCHU,R 1.00.1 Gig 6 F CHYB6 SH-2 MIDSTREAM ON SCHUYLKILL R AT FORMER MPDES DISCHG 2.00 8 2 ŝ <u> 30</u> G+08 칠 191 UPSTREAM FRO M SCHUYLKIIL RIYER, UNDER MAIN ST.BRIG CHYOS CHYOS none bits has clear, no odr potable no treat GY O ğ none:bkg hnu clear,no odr 31.00 no treat potable CHYO3 CHY03 nase/bkg hau clear, no odr = 24.00 B 2.00 CHY02 PSW-1 no treat pot ab le CHYD2 CHY02 INORG: Keytx SEKTYÖLATILES 10.00 benzolalantbracene 10.00 chrysene 19.00 tis(2-ethylhexyl)phthalate SAMPLE ID: LOCATION: *** YOLATILES DILUTION FACTOR: 0FT. LIMIT 5AMPLE NUMBER: CRQL [= 10.00 phenol | 10.00 4-methylphenol | 10.00 4-methylphenol | 10.00 naphthalene | 10.00 naphthalene | 10.00 naphthalene PERCENT SOLIDS: 10.00 phenanticene 10.00 anthracene 10.00 di-n-buty) phthalate 10.00 prene 10.00 pyrene 10.00 pyrene SAMPLE NUMBER FIELD MEASUREMENTS: SAMPLE NUMBER 10.00 2-butangne 10.00 4-methyl-2-pentanone 10.00 4-methyl-2-pentanone 10.00 ethylbenzene 10.00 ethylbenzene 10.00 total xylenes DILUTION FACTOR: 10.00 indenoti.2.3-sdipyrege CILLUTION FACTOR 10.00 dibenzla,hjanthracens 10.00 benzolk)fluoranthene 10.00 benzolk)fluoranthene 10.00 benzola)pyrene 10.00 parbazole 10.00 carbazole 17.7 pt 0.00 carbazole 7.7 pt 0.5 DATa: ****** PESTIC CAGL | F=1DL)
(0.00 methy)ene chloride
10.00 acetone 10.00 dibenzofuran 10.00 diethyl phthalate 10.00 fluorene 10.00 acenaphthere 10.00 acenaphthere 50.00 4-mitrophenol OMG: Compu ***** TYPE OF DATA: sesses TYPE OF DATA: SITE NAME: Tod Aumber: Lab Hames: DET. LINIT

COOK - I CAR.

SITE NAME: Linfield Industrial Park

SAMPLING DATE(s): 1/28/92

STATE/COUNTY CODE:

100 NUMBER: F3-3263-09

LAB NAMES: ORG: Compu INORG: Keytx

CASE NUMBER: 17744

EPA NUMBER:

PA-091 2898

SAMPLE MUMBER:	CHY02	CHY03	CHYD4	CHY05	CHYD6	CHY07	СНУ 0-8	CHY09	CHY 10	CHY24	CHYII	CHY 12	CHY13
SAMPLE ID:	PSW-1	(b) (6)	(b) (6)	SY-1	S#-2	\$ U-3	SW-4	SW-5	SW-6	VG-0	SD-1	50-2	SD-3
LOCATION:	COHMC	. , . ,		UPSTREAM FRO	MIOSTREAM ON	ONSITE DRAIN	DOWNSTREAM	CUHWC; SCHUY	DUPLICATE OF	AQUEOUS	UPSTREAM ON	MID-STREAM	ON-SITE DRA
	potable	potable	potable	M SCHUYLKILL	SCHUYLKILL R	AGE DITCH; 10	SAMPLE FROM	LKILL RIVER	SW-4 SAME	BLANK	SCHUYLKILL R	ON SCHUYL.R.	DITCH; 30 F
	no treat	no treat	no treat	RIVER, UNDER	AT FORMER	FEET FROM CO	SCHUYLK]LL	INTAKE. ACRO	LOCATION AS		UNDER MAIN	AT FORKER	FROM CONFL.
C11	clear, nó dór	clear, no adr	clear, nó dár	MAIN ST.BRIG	NPDES DISCHG	NFL.M/SCHU.R	RIVER	SS FROM SITE	54-1		SI. BAIDGE	NPDES DISCHG	Y/ SCHUYL.R
PH:				6.9	6.7	5.7	6.9				5.3	5.4	6.5
FIELD MEASUREMENTS:	none>bkg hnu	nane)bkg hnu	none) bkg hnu	NONE	NONE	NONE	NONE	HONE	NONE	NONE	HONE	NONE	NONE
PERCENT SOLIDS: PE OF DATA: ##### PESTICIDES											71.0%	45.0%	64.0%
PE OF DATA: ***** PESTICIDES Dilution Factor:								**********					***********
BILDIESM FACTOR:	1.0	1.0	1000.0	1000.0	1000.0	1.0	1000.0	1000.0	1000.0	1.0	45.0	13.0	51.0
. LIMIT SAMPLE NUMBER:	CHY02	CHY03	CHY04	CHY05	CHY 36	CHYOT	СНУОВ	CHYOS	CHY 10	CHY24	CHV 11	CHY12	CHY13
L [*=10L] UNITS:	<u>ug/]</u>	<u>ug/1</u>	<u> </u>	<u>ng/l</u>	<u></u>	<u> </u>	0g/l	na/1	<u> 1/en</u>	<u> </u>	ug/kg	ug/kg	<u> </u>
0.05 alpha-BHC											3.40 R	0.38 R	
0.05 beta-BHC													
											1.500R		******
0.05 gamma-BHC (lindane)											34.00 R		
0.05 heptachlor												0.13 B	0.14 B
0.05 aldrin											4.40 R	1.10 R	Q.33_R
0.05 heptachlor eboxide											1.700R		0.24 #
0.05 endosulfan 1													
0.10 dieldrin													0.46 <u>R</u>
0.10 4,4'-DDE												4.40 P	
0.10 endrin											3.90DR		1.60 R
0.10 endosulfan II				5.30 R	7 10 8							2,50 R	0,32 R
0.10 4,4'-DDD				5.39 M	7.10 R		4.60 R	5.00 R	4.90 R		2.80 P	4.80 R	
0.10 endosulfan sulfate												4.70 R	
0.10 4.4'-001		***************************************					14.00 R				7.44.5	3,20 R	
0.50 methoxychlor 0.10 endrin ketone							14.00 H				7.80 R	15.00 R	2.70 8
0.05 alpha chlordane			2.90 R								3.80 R		C.65 R
0.05 gamma chlordane			<u></u>								5,30 R	4.10 R	0.26 R
0.00 gamma chiordane 1.00 aroclor-1260											2.70DR	3.50 R	0.13 R
1.60 endrin aldehyde												2.60 P	
Conments: ####################################													

ſ

SITE NAME: linfield Industrial Park LAB NAMES: ORG: COMOU INORG: Keytx

TOD NUMBER: F3-3283-09

STATE/COUNTY CODE: SAMPLING DATE(s): 1/28/92

CASE NUMBER-17724

EPA NUMBER:

PA-091 2898

SAMPLE MUMBER. CHY15 CHY16 CHY 17 CHY 18 CHY19 CHY22 CHY20 CHY21 CHY23 CHY26 CHY25 CHY14 SD-4 S-2 S-3 S-4 S-5 S-8 5-6 5-7 S-9 5-10 S-0 SAMPLE ID: 5-1 SE EDGE OF IN SOUTHERN ACROSS TRIP LOCATION: DOWNSTREAM AT BASE OF AT DRUMS INSIDE ABOVE AT CONFLU. AT CORRUGATO DUPLICATE OF 10-FT. SOUTH AREA OF SITE SAMPLE ON TRANSFORMER OUTSIDE OF GROUND TANK W/2 CONCRETE PIPE OUTFALL TRASH DUMP OF DRUNS BY MAIN STREET BLANK ON NORTH SID AN AREA OF SCHUYLKILL SHED WEST OF FARM ON EAST DRAIN, IRDUG SOUTH AND WE SAME LOCATIO WEST OF TRASHDUMP WE FROM SITE RIVER E OF DISTIL. DISTILLERY. SIDE BLDG.2 HS SW WAREHS ST OF WAREHS N AS S-5 WAREHOUSES ST OF WAREHS STRESS, VEG. 6.2 6.7 6.6 6.6 6.0 PH: 6.2 6.7 5.0 6.6 6.1 5.4 MUME NONE NONE FIELD MEASUREMENTS: NONE NONI NONE NONE MONE NONE NONE NONE 78.0% 76.0% 65.0% 65.0% 78.0% 68.0% PERCENT SOLIDS: 44.6X 81.0% 38.0% 72.0% AO.DK VOLATILES TYPE OF DATA: ###### DILUTION FACTOR: 2.3 1.2 2.6 1.3 1.4 1.3 1.2 1.5 1,5 1.3 1.5 1.0 DET. LIMIT SAMPLE NUMBER: **CHY14 CHY 15 CHY 16 CHY17** CHY18 CHY19 CHY22 CHY20 CHY21 CHY23 CHY26 CHY25 CRQL [*=IDL] ug/] UNITS: uq/ka ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg uq/kq ug/kg ug/kg 83.008 150.00 10.00 methylene chloride 54.008 49,008 120.008 45.008 52.008 47.00B 56,008 70.00B 51.008 58.00B 10.00 acetone 39.00B 61.00B 420.00B 28.008 25,008 57.00B 61.008 69.008 86.00B 37.00B 73.008 160.00 10.00 2-butanone 10.00 1.1.1-trichlorgethane 10.00 4-methyl-2-pentanone 340,00 120.00 10.00 toluene 10.00 ethylbenzene 100.00 690.00 10.00 total xylenes TYPE OF DATA: #88888 DILUTION FACTOR: 74.0 1000.0 1700.0 84.0 45.0 86.0 41.0 750.0 250.0 42.0 48.0 9.0 CHY26 DET. LIMIT SAMPLE NUMBER. CHY14 CHY15 CHY16 CHY11 CHYIA **CHY19** CHY22 EHY20 CHY21 CHY23 CHY25 CPQL (*=IDL) UNITS: uq/kq uq/kq uq/kq uq/kq uq/kq uq/kq uq/kq uq/kq uq/kg ug/kq uq/kq n/a 10.00 phenol 10.00 4-methylphenol 2300.00 J 10.00 1,2,4-trichlorobenzene 150.00J 2500.00 J 10.00 naphthalene 4500.00J 71.00J@ 10.00 2-methy maphthalene 8000.00J 95.00J 75.00 J 790.00J 10.00 acenaphthylene 98.00J 10.00 acenaghthene 89.00 J 150.0030 9000.00 440.00J 350.00J 50.00 4-mitrophenol 10.00 dibenzofuran 130.00J 2900.00 J 61.00J@ 54.00 B 10.00 diethyl phthalate 10.00 fluorene 2600.001 66.00 J 180.00J 89.0034 4100.00 J 10.00 phenanthrene 330.0QJ 2900,00J 6500.00J 620.00J 1400,000J 2300,00 J 900,00J€ 52000.000J 3500.00 J 77.00J 10.00 anthracene 11.003 140.00 3 450.001 150.0034 14000.00 920,003 16.00 di-n-buty) phthalate 10<u>.00</u> flugra<u>ethe</u>ne 790.00 7100.00J 4900,001 1200.00 J 170.00J 3900.00DJ 4100.00 J 1500.00Je 72000.00DJ _8800.00_J 79.00J 10.00 pyrene 450.00 J 4980.90 J 11000.00 J 920.00 J 3300.00DJ 2000.00 J 1300.00J@ 54000.0003 3500.00 J 63,001 99.0CJ 10.00 butyloanzyl ontmalate 130.00 B 470.00 R 10.00 benzo(a)anthracene 420.00J 3000.00J 5200.001 630,00J 1700.00 1400,00 730.00 33000.00 4500.00 72.DOJ 10.00 chrysene 340.00J 3800.00J 4300.00J 610.00J 2100.000 1500.00 880.00 € 32000.00 3800.00 44.00J 96.00J 350.00 B 10.00 bis(2-ethylmex, liphtmalate 1300.00 B 7500.00 B 1609.00 B 10.00 benzo(b)fluoranthene 360.00 J 7800.00 J 3900.00 J 1500.00 J 4500.00DJ 2100.00 J 1600.00**Je** 46000.00 J 6600.00 64.00 J 105,00 J 10.00 benzolkifluorantmene 240.00 J 1500.06 J 830.00 J 570.00Je 15000.00 J 3800.00 J 63.00 J 360.00J 1700.003 480.00J 30000.00 J 6900.00 J 86.00J 10.00 benzo(alcyrene 3700.00J 1900.00DJ 1500.00 J 550.00J@ 10.00 indeno[1,2,3-cd)pyrene 220.00J 2400.00J 500.001 1700.000 1100.00 370.00 15000,000 3800.00 10.00 ditenzia.hlanthracene 78.001 200.001 350.00 J 400.00 J 180.00Je 5300.00 J 1700.003 10.00 benzo(a,h,)perylene 190.00. 520.00 J 1800.000 1000.00 2100,003 1900.00J 310.00 € 7600.00 3500.00 10.00 carbazole 100.001 180.00 3 330.001 120.0034 11000.00 710,003 TYPE OF CATA: ###### PESTICIOES DILUTION FACTOR: 76.0 \$10.0 86.0 42.0 46. û 43.0 41.û 50.0 51.0 42.0 40.6 6.6 200 070010 11 9800 1...11 00.15 02.12 12.80 Ful. 12 on of 40.755

SITE NAME: Linfield Industrial Park

TDD NUMBER: F3-3263-09

SAMPLING DATE(s): 1/28/92 CASE NUMBER: 17744

STATE/COUNTY CODE: EPA NUMBER:

PA-091 2898

LAB NAMES: ORG: Compu INORG: Keytx

	SAMPLE NUMBER:	CHY14	CHY15	CHY 15	CHY 17	CHY 18	CHY 19	CHY22	CHY 20	CHY21	CHY23	CHY26	CHY25	
	SAMPLE ID:	SD-4	S-1	S-2	S-3	S-4	S-5	S-8	S-6	5-1	S-9	S-10	S-0	
	LOCATION:	DOWNSTREAM	AT BASE OF	AT DRUMS	INSIDE ABOVE	AT CONFLU.	AT CORRUGATO	DUPLICATE OF	SE EDGE OF	10-FT. SOUTH	IN SOUTHERN	ACROSS	TRIP	
		SAMPLE ON	TRANSFORMER	OUTSIDE OF	GROUND TANK	W/2 CONCRETE	PIPE OUTFALL	§-5	TRASH DUMP	OF DRUMS BY	AREA OF SITE	MAIN STREET	BLANK	
		SCHUYLKILL	ON NORTH SID	SHED WEST OF	FARM ON EAST	DRAIN, TROUG	SOUTH AND WE	SAME LOCATIO	WEST OF	TRASHDUMP WE	AN AREA OF	FROM SITE		
		RIVER	E OF DISTIL.	DISTILLERY.	SIDE BLDG.2	HS SW WAREHS	ST OF WAREHS	N AS S-5	WAREHOUSES	ST OF WAREHS	STRESS. YEG.			
	PH:	6.2	6.7	6.0	6.6	6.1	6.2	6.4	8.7	5.5	6.6	6.0		
	FIELD MEASUREMENTS:	NONE	HONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	
	PERCENT SOLIDS:	44.0%	81.0%	38.0%	78.0%	72.0%	76.0%	80.0%	65.0%	65.0%	78.0%	68.0%		
TYPE OF DATA: *	PESTICIDES	*******	**********	**********	***********	**********	***********	***********	**********	**********		***********	*************	*********
	DILUTION FACTOR:	76.0	810.0	86.0	42.0	46.0	43.0	41.0	50.0	51.0	42.0	48.0		
DET. LIMIT	SAMPLE NUMBER:	CHY14	CHY15	CHY16	CHY 17	CHY18	CHY 19	CHY 22	CHY20	CHY21	CHY23	CHY 26	CHY25	
CRQL (*=10L)	UNITS:	ug/kg	ug/kg	ug/kg	ua/ka	ug/kg	ug/kg	ug/kg	ug/kg	ug/kg	uq/kq	ug/kg	n/a	
0.05 alpha	I-BHC	D.35 R	11.00 R	1.10 R			0.08 R							
0.05 beta-	BHC			3.90 R					1.30 R		0.87 R	0.28 R		
0.05_delta	1-BHC	5.50DR												
0.05 gamma	i-BHC (lindane)	34.00BR	3.40 R	4.40 R	14.00 R					9.18 R		0.09 R		
0.05 hepta	ichlor			0.16 8	16.00 R		0.15 B		1.80 R	0.81 B	0.23 8	0.19 B		
0.05 aldri	n	4.30 R	12.00 R	2.60 R	14.00 R	Q.35 R	0.39 R		5.60 R	1.40 R		0.56 P		
	ichlor epoxide	5.60 R			0.19 R	0.54 R	0.41 R		2.30 R					
0.05 endos		14.00DR		0.31 R										
0.10 dield		3.3QDR		37, <u>00</u> R	31,00 R	Q.27 R	Q.1Q.R	6.20 R	14.00 R	2,40 R		0.20 R		
0.10 4,4 -				13,00 R		2.80 R	1.10 R	1.60 R	11.00 R	6.40 R		9.80 R		
0.10 endri		4.50DR		48.00 R	39.00 R	2.60 R	1.50 R		34.00 R		1.40 R	3.30 R		
0.10_endos				64.00 P	2,20 R	2.60 R	Q.46 R		20,00 R		0.41 R	0.28 P		
0.10 4,4 -		4.30 R												
	sulfan sulfate	0.69 8		19.00 R										
0.10_4.4_=		1.80DR			31.00 R	Q.48_R		2.30_B		13.QQ R		Q.92 R		
0.50 metho		10.00 R		180.00 P	31.00 R	18.00 R	5.50 R	26.00 R	120.00 R	110.00 R	1.40 B			
0.10 endri		4.60 R						0.66 R						
<u>0.05 alpha</u>		6.20 A		11.00_R				3.50 R		2.40 R				
C.OS gamma		3.30 R		11.00 P	0.09 R	0.23 R		2.10 R	2.80 R	5.70 R				
1.00 arocl			300000.00DC	** ** *						460.00				
<u>1.00_endri</u>	n_a]dehyde	3.10 R		53.00 R			~		17.00 R	20.00 R	O.61_R			

C= confirmed by GC/MS

SAMPLING DATE(s): 1/28/92

STATE/COUNTY CODE:

PA-091 2898

SITE NAME: Linfield Industrial Park LAB NAMES: ORG: Compu INGRG: Keytx

TOO NUMBER: F3-3263-09

CASE NUMBER: 17744 EPA NUMBER:

SAMPLE NUMBER:	MCJE14	NCJE15	MCJE16	HCJE17	MCJE18	MCJE19	MCJE22	MCJE20	MCJE21	MCJE23	MCJE26	
SAMPLE ID:	50-4	5-1	S-2	S-3	S-4	S-5	S-8	S-6	S-1	5-9	S-10	
LOCATION:	DOWNSTREAM	AT BASE OF	AT DRUMS	INSIDE ABOVE	AT CONFLU.OF	AT CORRUG.	DUPLICATE OF	SE EDGE OF	10-FEET SOUT	IN SOUTHERN	ACROSS	•
2000.101.	SAMPLE IN	TRANSFORMER	OUTSIDE OF	GROUND TANK	2 CONCRETE	PIPE OUTFALL	S-5	TRASH DUMP	H OF DRUMS	PORTION OF	MAIN STREET	** = - · · ·
	SCHUYLKILL	ON NORTH SID	SHED WEST OF	FARM ON EAST	DRAIN. TROUG		SAME LOCATIO	WEST OF	NEAR TRASHOM	SITE: AREAOF	FROM SITE	ş 🖫
	RIVER	E OF DISTIL.	DISTILLERY	SIDE BLOG. 2	HS:SW WAREHS	ST OF WAREHS	N AS S-5	WAREHOUSES	M.OF WAREHSE	STRESS. VEG.		3 2
PH:	5.2	6.7	6.0	6.6	6.1	€.2	6.4	6.7	6.6	6.6	6.0	Į
FIELD NEASUREMENTS:	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	_
PERCENT SOLIDS:	43.2%	63.6%	43.7%	61.8%	76.0%	83.1%	74.8%	64.7%	74.9%	77.4%	67.9%	-
TYPE OF DATA: ***** INORGANICS	*******	********	*********	***********	**********	*********	**********	***********	************		***********	
DILUTION FACTOR: : GFAA		0.239	0.458	0.244	0.263	0.241	0.268	0.309	0.267	0.258	0.295	
: ICP		0.239	0.456	0.244	0.263	0.241	0.268	0.309	0.267	0.258	0.295	
; Hg	1.160	0.600	1.140	0.611	0.658	0.602	0.668	0.773	0.568	0.646	0.736	
: CN	0.120	0.060	0.114	0.061	9.066	0.060	0.067	0.077	0.066	0.065	0.074	
DET. LIMIT SAMPLE NUMBER:	MCJE14	MCJE15	MCJE18	MCJE17	HCJE10	MCJE19	MCJE22	MCJE20	MCJE21	MCJE23	MCJE26	
CRQL [== IDL] UNITS:	og/kg	<u>ng/kg</u> _	99/kg	B9/b9	<u> </u>	mg/kg	#9/kg	<u>#9/kg</u>	<u>mg/kg</u>	#9/kg	09/kg	
14.00 aluminum	10500.00	6610.00	2140.00	4970.00	3400.00	4170.00	5470.00	3760.00	50 90 .00	6230.00	6790 .00	
3.00 antimony									11.00			
2.00 arsenic	3.80 6	312.00	62.40 J	3,90 8	6.70 8	5,40 8	10.40	9.00	33.30	<u>5,60 B</u>	3.40 8	
1200.00 barium	154.00	158.00	407.00	80.60	52.70	66.00	113.00	80.90	258.00	111.00	44.60	
1.00 berylltum	2.10	0.70	0.55	0.71	0.51	0.50	0.78	0.53	0.65	1.00	0.72	
3.00 cadmium	2.20	2,60	2.60					1.10	2.30			
7000.00 calcium	4560.GO	1270.00	2220.00	1520.00	2110.00	1620.00	2670.00	12400.00	17600.00	1730.00	382.00	
3.00 chromiu#	43.20	29.10	63.90	12.40	10.60	8.10	8.20	36.60	45.10	15.20	14.20	
4.00 cobalt	59.70	14.30	9.60	4.60	6.40	7.50	8.70	0.60	14,80	11.10	9.308	
3.00 copper	105.00	42.70 J	71.50 J	15.40 J	10.00 J	7.10 J	17.00 J	81.70 J	380.00 J	20.10 J	13.50 J	
6.00 iron	23000.00	37700.00	39000.00	12800.00	10800.00	9880.00	11600.00	10300.00	67800.00	20000.00	18100.00	
1.00 lead (anal, by GEAA)	106.00	349.00	4810,00	35.10	18.20	<u>16.90</u>	22.20 J	253.00	350.00	20.20 J	17.80 J	
37.00 magnesium	3100.00	1830.00	784.00	1040.00	937.00	1140.00	1070.00	4750.00	4860.00	1890.00	1250.00	
2.00 manganese	1540.00	411.00	464.00	811.00	318.00	351.00	469.00	437.00	801.00	1090.00	366.00	
0.20 mercury	0.35	0.18	2.30					0.23	0.33			
22.00 nickel	75.20	20.90	10.60	9.80	7.40	7.10	12.70	10.70	56.50	14.40	10.70	
722.00 potassium	970.00	822.00		782.00	397.00	463.00	483.00	534.00	1100.00	883.00	582.00	
2.00 selenium				Q. <u>11</u> _ B	Q.63 B	0,60 8	0.59.0	0.95 5			0.82 8	
30.00 sodium	195.00	129.00	52.40	64.50	43.50	115.00	91.00	63.40	219.00	41.10	32.10	
4.00 vanadium	20.20	41.10	26.50	15.70	19.60	12.30	19.80	12.70	73.10	31.50	27.20	
2.00 zinc	497.00	1230.00	651.00	200.00	169.00	201.00	286.00	226,00	1150,00	61,80	129.00	
10.00 cyanide		0.68	1.80									

D=result reported from diluted re-analys

C= confirmed by GC/MS

sample det.limit=dil.factor X IDL

SITE NAME: Linfield Industrial Park

TOD NUMBER: F3-3263-09

SAMPLING DATE(s): 1/28/92 CASE NUMBER: 17744

STATE/COUNTY CODE: EPA NUMBER:

PA-091 2898

LAB NAMES: ORG: Compu INORG: Keytx

	AMPLE NUMBER:	MCJE02	MCJE03	MCJE04	MCJE05	MCJE06	MCJE07	MCJE08	NCJE10	MCJE09	MCJE24	MCJE11	MCJE12	MCJE13
	SAMPLE ID:	PSW-1	HW-1	H¥-2	SW-1	S₩-2	SW-3	SW-4	S₩-6	S₩-5	0-PA	SD-1	SD-2	SD-3
	LOCATION:	CUHWC	Zwolak	Brown,	UPSTREAM	MIDSTREAM ON	ONSITE DRAIN	DOWN STREAM	DUPLICATE	CUHWC: SCHUYL	AQUEOUS	UPSTREAM ON	HID-STREAM	OH-SITE DITC
		potable	potable	potable	FROM SCHUYL-	SCHUYLKILL R	AGE DITCH:30	SAMPLE FROM	OF SW-4	KILL RIVER	BLANK	SCHULYKILL R	ON SCHUYL R.	H 30-FT. FRO
		no treat	no treat	no treat	KILL A. UND	AT FORMER	FEET FROM CO	SCHUYLKILL	SAME LOCATIO	INTAKE, ACR-		UNDER MAIN	AT FORMER	M CONFLU. W/
		clear,no odr	clear.no odr	clear,no odr	ER MAIN ST.	NPDES DISCHG	NFLU.W/SCH.R	PIVER	N AS SW-4	TIZ MCRR 220		ST. BRIDGE	NPDES DISCG.	SCHUYLKILL R
	PH:				6.9	6.7	6.7	5.9		£.8		6.3	6.4	6.5
FIELD	MEASURENENTS:	none)bkg hau	none>bkg hnu	none) bkg HNU	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	MONE	NONE
PE	RCENT SOLIDS:	·	-	•								51.2%	50.4%	60.0%
TYPE OF DATA: *****	INORGANICS	*******	**********	**********	***;::::::::::::	*******	***********	**********	********	**********	***********		**********	**********
40110113	FACTOR: : GFAA	1,000	1,000	1,000	1.000	1.000	1.000	1.000	1.000	1.900	1.000	0.391	0.397	0.333
	: ICP	1,000	1,000	1.006	1,000	1,000	1.000	1.000	1.000	1.000	1.000	0.391	0.397	0.333
	: Hg	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.977	0.992	0.833
	: CN	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	0.098	0.099	0.083
DET. LIMIT S	AMPLE NUMBER:	MCJE02	MCJE03	MCJE04	MCJE05	MCJE06	MCJE07	MCJE08	MCJE10	MCJE09	MCJE24	MCJE11	MCJE12	MCJE13
CRQL (*=IDL)	UNITS:	ug/1	Ug/1	ug/1	ug/1	Ug/1	ug/l	ug/1	ue/1	ug/1	ug/1	ng/kg	mg/kg	mg/kg
14.00 alumnoum		22.90 B	15,10 B	32.50 B	134.00 J	937.00 J	1090.00 J	1560.00 J	286.00 J	119.00 J	15.10	6080.00	8190.00	12400.00
3.00 antimony					*									
2.00 arsenic		10.80 B	8.10 B	5.80 B	6.80 B	7.20 B	7.20 B	8.90 B	6.40 8	6.70 B	5.40	7.00 B	6.10 B	7.80 B
1200,00 barnum		95.50	248.00	284.00	33.00 J	55.60 J	55.30 J	93.90 J	33.80 J	30.30 J		120.00	118.00	145.00
1.00 beryllium								1.10				1.10	1.30	2.20
_3.00 cadmium												1.40	1.40	
7000.00 calcium		68700.00	38700.00	48400.00	38000.30	39900.00	14500.00	44150.00	37900.00	33100.00	29.10	10200.00	4070.00	1300.00
3.00 chromium						3.70 J		7.10 J				31.60	31.50	19.30
4.00 cobalt						6.70 1		29.00 J	6.40 J			38.80	32.90	31.00
3.00 copper		5.00	188.00	68.00	5 50 J	23.80 J	5.00 J	55.60 J	7.40 J	4.50 J		74.20	58.30	61.00
6.00 ron		9.40 8	52.50 B	21.90 B	202.00 J	1380.00 J	930.00 J	3470.00 J	547.00 J	132.00 J	12.50	14900.00	17800.00	17500.00
1.00 lead (anal	by GFAA]					19.00 J	1.10 J	59.90 J	2.70 J			113.00 J	62.70	33.30 J
37.00 magnesium		15100.00	15300.00	16800.00	12400.00	12700.00	5790.00	14300.00	12400.00	10800.00	42.60	5420.00	3110.00	2580.00
2.00 mangamese				2,70	123.00 J	507.00 J	51.70 J	1210.00 J	379.00 J	113,00 J		1340.00	1230.00	291,00
0.20 mercury												0.29	0.30	0.50
22.00 nickel								32.60				40.30	40.40	55.20
122.00 potassium		774.00	1000.00	1300.00	3030.00 J	3300.00 J	2270.00 J	3770.00 J	2620.00 J	2780.00 J		629.00	560.00	869.00
2.00 selenium		2.00 B			2.00 B	2.00 8			3.30 B	2.50 8		1.50 B		Q.96 B
30.00 sodium		14700.00	21900.00	17750.00	23000.00	22600.00	6150.00	24100.00	22300.00	18800.00		203.00	221.00	80.60
4.00 vanadium			,					6.40				23.30	22.80	23,20
2.00 zing		14.40 B	63.30 B	39.50 8	49.50 B	176.00 J	27.10 B	301,00 J	61.40 8	76.00 B	15.80	384.00	288.00	239,00
10.00 cyanide						11.70								

Deresult reported from diluted re-analysisample det.limit=dil.factor x IDL

C= confirmed by GC/MS

Linfield Industrial Park

Project No.:

3263-09

7.2 ORGANIC DATA VALIDATION REPORT: CASE 17744

7.2.1 <u>Overview</u>

Case 17744 consisted of 14 low-level solid samples and 10 low-level aqueous samples submitted to

Compuchem Laboratories (COMPU) for volatiles, semivolatiles, and pesticide/polychlorinated

biphenyl (PCB) analyses. One field blank and two duplicate pairs were included in this sample set.

One trip blank was analyzed for volatile compounds only. The samples were analyzed as a Contract

Laboratory Program (CLP) Routine Analytical Service (RAS).

7.2.2 Summary

These samples were analyzed according to the March 1990 Statement of Work (SOW), and the data

were fully reviewed using the National Functional Guidelines for Organic Data Review, Multi-Media,

Multi-Concentration, February 1988, with Regional Modifications. (Areas examined in detail are

included in the Support Documentation appendix to this report.) All samples were successfully

analyzed for all target compounds. Detection capability for most analytes was demonstrated by

meeting criteria for spike and surrogate recoveries and instrument tuning and calibration. The

laboratory performed all analyses in accordance with CLP RAS protocols.

7.2.3 Major Issues

Issues affecting or changing the confidence concerning the presence or absence of analytes and issues

related to severe quantitative bias are discussed below.

All results for methylene chloride, acetone, diethyl phthalate, di-n-butyl phthalate,

butylbenzyl phthalate, and bis(2-ethylhexyl) phthalate (DEHP) have been flagged as artifacts

of blank contamination (B), except where these compounds were detected in the field

blanks, samples CHY24 and CHY25. The results for these common laboratory contaminants

were not substantially higher in the samples than in all associated blanks.

7-2

Project No.: <u>3263-09</u>

 Several single-peak pesticide results have also been flagged (B) because concentrations were within five times the concentrations for corresponding peaks detected in blank analyses.
 The affected compounds and associated results are as follows:

Compound	Affected Results
heptachlor	CHY12, CHY13, CHY16, CHY19, CHY21, CHY23, and CHY26
endosulfan sulfate	CHY14
methoxychlor	CHY13 and CHY23

• Many pesticide compounds were reported, but, because none were found at levels high enough to allow GC/MS confirmation, the confidence concerning the presence of pesticides depends upon the retention time of each reported compound being unique (i.e., different from any unrelated detectable compound that might happen to be in the sample). Unfortunately, there were so many closely spaced peaks of similar sizes in the chromatograms of solid samples, there is a high probability that unrelated compounds could have eluted at retention times similar to the target pesticides and thereby produced false positives for the reported pesticide compounds. Furthermore, in many cases, there were severe disagreements between the concentrations of a pesticide calculated from injection of the same extract on two different GC columns, which suggests that the larger of the two peaks must be attributable to interferences.

Therefore, it cannot be determined if any individual target pesticide compound reported in these samples is actually present, versus an artifact attributable to unrelated organic compounds that are not part of the CLP target compound list. All target pesticide results have been flagged (R), unreliable, to indicate that these compounds may or may not be present. Even groups of related pesticide compounds reported together in samples CHY11, CHY12, CHY13, and CHY14 are not considered reliable. [For example, the components of technical-grade chlordane (alpha chlordane, gamma chlordane, heptachlor, and heptachlor epoxide) were reported together, but because there were continuous closely spaced peaks adjacent to these target compounds that were of similar size, technical chlordane constituents were not visible above the random interference pattern that was superimposed over the target compound retention time zones. In addition, several of the identifications of chlordane and DDT analogs exhibited greater than four-fold discrepancies between the concentrations detected on two GC columns.] The Support Documentation attachments contain example chromatograms and comparisons of retention times and concentrations detected on the two GC columns. Further information would be useful to determine whether any of the reported pesticides are actually present.

Linfield Industrial Park

Project No.: 3263-09

• The reviewer corrected the quantitation of results for benzo(b)fluoranthene and benzo(k)fluoranthene in all samples where both of these isomers were reported, except CHY17 and CHY22. In these samples, the laboratory identified and reported these isomers as a co-eluting pair and assumed that equal amounts of both isomers were present. The laboratory personnel did not attempt a manual integration of the separate chromatographic peaks in order to obtain more accurate results for the individual isomers. In some cases, the mass-selective chromatogram indicated that only the benzo(b) fluoranthene isomer was present above the laboratory's reporting limit of 1 ng. In samples CHY11, CHY13, CHY15, CHY16, CHY18, and CHY23, the reviewer deleted the results for benzo(k)fluoranthene from the data summary. In samples CHY12, CHY14, CHY19, CHY20, CHY21, and CHY26, the reviewer changed the percentage of area attributed to each isomer. Because the reviewer's recalculations for the areas associated with each isomer are estimates, all results changed by the reviewer should be considered estimated. The Support Documentation appendix contains all chromatograms, quantitation lists for the samples and associated standards, and re-calculations.

- Very low recoveries (less than 10 percent) were reported for the tribromophenol surrogate in sample CHY22. This sample was re-analyzed and exhibited similar recoveries. Detection capability for acid-fraction compounds, in particular multihalogenated compounds such as pentachlorophenol, is considered unreliable for this sample. Because quality control data were similar for base-neutral surrogates, the reviewer reported the higher of the initial and re-analysis results for each base-neutral compound that was not affected by blank contamination and the lower of the two results for compounds within the range affected by blank contamination.
- Very low matrix spike/matrix spike duplicate (MS/MSD) recoveries (two and 10 percent, respectively) were obtained for pentachlorophenol in solid sample CHY18. Corresponding tribromophenol surrogate recoveries in these analyses were 12 and 53 percent, respectively. Therefore, detection capability for pentachlorophenol is considered unreliable in all solid samples.

R-51-5-2-15 7-4

1.45.54

Project No.: <u>3263-09</u>

• The result for benzo(g,h,i)perylene has been flagged as tentative (N) in sample CHY11. The mass spectrum for this compound did not contain all the characteristic ions that are present in the reference standard. The base peak appeared to be obscured by interferences, and the lower intensity half-mass ions were not visible. Because many other polynuclear aromatic compounds are present in this sample, and because this compound was confidently identified in nearly every other sample at this site, this compound should be considered present at this location. Further information may be useful in confirming the presence of this compound at this sampling location.

7.2.4 Minorissues

Data qualifications related to precision, accuracy, and bias in reported results and quantitation limits are discussed below.

- The recoveries for the acid semivolatile surrogate compounds 2-fluorophenol, tribromophenol, and 2-chlorophenol were low in solid sample CHY16. (The recovery for 2-fluorophenol was below contractual limits.) Detection limits for acid-fraction compounds are considered biased low in this sample.
- The laboratory diluted the semivolatile fractions of samples CHY18 and CHY20 because levels for some target compounds exceeded the calibration range of the instrument. The reviewer reported the highest levels for all compounds that were within the calibration range of the instrument that were not considered artifacts of blank contamination (such as phthalates). For compounds that exhibited instrument levels that were below the calibration range, the results that were closer to the lower limit of the calibration range (10 ng) were reported. For compounds present at levels affected by blank contamination, the lowest of the two results was reported. Note that diethyl phthalate was not reported in sample CHY18 because it was detected only in the diluted analysis.
- The recovery for the tribromophenol surrogate was low for the initial, undiluted analysis of sample CHY18. (This recovery was acceptable for the diluted re-analysis.) The detection limits for multihalogenated phenols (especially pentachlorophenol) are considered biased low for the initial analysis of this sample. However, the elevated detection limits reported from the diluted analysis are considered valid, with the exception of pentachlorophenol, which was previously qualified unreliable.

R-5 | 5 2-15 7-5

Linfield Industrial Park

Project No.: <u>3263-09</u>

(1) **(6) (4)** (6) (6)

• Low recoveries for the tribromophenol surrogate were obtained for samples CHY17, CHY19, and CHY20. Detection limits for multihalogenated phenols (especially pentachlorophenol) are considered biased low for these samples.

- Low recoveries were noted for pyrene for the MS/MSD analysis of sample CHY18. Because the recoveries for the other base-neutral compounds were acceptable, and the terphenyl surrogate recoveries were acceptable, it is possible that sample inhomogeneity may have contributed to these low recoveries. A direction of bias cannot be firmly established. All solid results for pyrene have been flagged as estimated (J) and may be either imprecise or biased slightly low.
- The field duplicate samples CHY19 and CHY22 exhibited imprecision in results above the quantitation limit for phenanthrene, fluoranthene, and benzo(a)pyrene. Results for these compounds are considered estimated and have been flagged (J) in all surface soil samples (CHY15 through CHY23 and CHY26).
- A high percent difference between the average initial calibration relative response factor (RRF) and the continuing calibration RRF for benzo(g,h,i)perylene was observed on the day that sample CHY16 was analyzed. The result for this compound should be considered estimated in this sample.
- The laboratory diluted and re-analyzed the pesticide/PCB fraction of samples CHY11, CHY14, and CHY15 because of target compounds that exceeded the calibration range of the instrument. Based on an evaluation of both analyses for each sample, the reviewer reported the highest levels for all compounds that were detected in either analysis that were not rejected because of blank contamination. For sample CHY15, the results for Aroclor 1260 were reported from the diluted analysis because the instrument level result was within the range of the calibration standards for this PCB.
- The extraction for the semivolatile analysis of solid sample CHY16 occurred 19 days after sampling. Detection limits may be biased low for compounds that were not detected, although the degree of bias may be very minor for compounds known to be persistent in the environment (polycyclic aromatic hydrocarbons (PAHs), in particular). The result for DEHP in this sample was previously flagged due to blank contamination. All other detected compounds were PAHs and were previously flagged (J), estimated, because levels are below the quantitation limit.

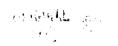
7-6

Project No.: <u>3263-09</u>

7.2.5 Notes

• The laboratory extracts of the pesticide fraction of samples CHY15 and CHY21 were accidentally switched in the initial analyses, as revealed when high levels of PCBs were confirmed by GC/MS in the semivolatile extracts of the opposite sample. A re-extraction of these two samples was performed that confirmed that sample CHY15 contained high levels of PCBs and sample CHY21 contained only a very low level.

• The laboratory did not provide the second page of the semivolatile result form (Ic) for sample CHY02. Raw data indicated which results the laboratory intended to report, so the reviewer has reported the appropriate values on the data summary.


• Although flagged (B), the result for acetone may be real in sample CHY16. The instrument level result was higher than for any other sample, and the presence of 2-butanone (a related ketone that is often present when acetone is present in a sample) may also suggest that acetone may be indigenous to this sampling location. Further information may be useful in verifying if acetone is actually present at this location.

The reviewer noted the presence of 4-nitrophenol, an unusual compound, in sample CHY07.
 This compound was confirmed by acceptable spectrum and retention time matching.
 Although this sample was also chosen for MS/MSD analysis, there was no evidence of any matrix spike compounds (other than 4-nitrophenol) in the unspiked analysis of CHY07.

• The results reported for Aroclor 1260 in samples CHY15 and CHY21 exhibited acceptable peak-pattern matching quality and retention time match for characteristic peaks on both chromatographic columns. In addition, penta-through heptachlorobiphenyls were also identified as tentatively identified compounds (TICs) in sample CHY21; these congeners are the major constituents of Aroclor 1260.

 Because the laboratory did not supply mass-selective chromatograms for sample CHY17, it cannot be determined whether only one compound or both benzo(b)fluoranthene and benzo(k)fluoranthene are present and in what relative quantities each isomer may be present.

R-51-5-2 15 7-7

Linfield Industrial Park

Project No.: 3263-09

• The dilution factor for the pesticide/PCB analyses of aqueous samples CHY04, CHY05, CHY06, CHY08, CHY09, and CHY10 has been entered as 1,000 on the data summary, and the units for these analyses have been entered as nanograms per liter (ng/l). This was done because the results reported by the laboratory were too low to be entered as standard microgram/liter (ug/l) units. It should be noted that these samples were not diluted 1,000 times.

- Sample results that are below the range of accurate quantitation have been flagged as estimated (J) where no other flag exists.
- TICs that are not artifacts of blank contamination are included as an attachment.
- This report has been formatted to address issues directly affecting data usability at the subject site. Support data are included as an attachment. (Issues pertaining to laboratory contractual compliance are addressed in the Regional Data Assessment Forms directed toward the Technical Project Officer.)

Report prepared by (b) (4) (215) 971-0900

Report reviewed by (b) (4) (215) 971-0900

care	177	uu sa	MPLE D.	ATA SUMM.	ARY:	ORGA	NIC TENTATIVELY IDENTIFIED COMPOUNDS
Curc	, , ,		ANALYSIS	ESTIMATE	D	QUALIF	, , , , , , , , , , , , , , , , , , ,
				CONCENTRA		COD	, , , , , , , , , , , , , , , , , , ,
		<u> </u>	(VOA/BNA)	VALUE	בדומט	: 1	
			<u> </u> `			<u> </u>	* There were NO VOA TICS for
					<u> </u>		any sample except CHYIB X
		27.7	10.4		10/21		
		CHAIR	VOA	1670	Ug/kz	101/14	
		1		21		150	C4-alkyl benzene CicHit
		V	14	120	1	(50	Catho, methyl styrene
		AUV02	BNA	_	V4(0		aliphatic alcohol
		(1	(1	8	1 11	TOT	Satid HC (3)
						191	
		CHY63	BNA	4.4			ND
		CHY04	BNA				ND
		CH105	BN'A	3	V4 (YNK	pass. Natrogen subst. aromatic
		4:151-1	10414				. (0
		CHYOL	IRINA				NO
		CHYO7	BUA		 		ND
• .		CHYO 1	IDIVB				
		CHYDS	BNA				NO
		3,,,,,				_	
		CHYCH	BNA			4 .	ND
	-						
		CHYIU	BNA				NO
			 			_	
			1		<u> </u>		

DEFINITIONS OF QUALIFIER CODES:

- SUSPECTED FALSE POSITIVE RESULT: Compound is either a common laboratory contaminant, or else a SUS ≖ possible reaction byproduct (artifact) attributable to the chemical reagents used for sample preparation and analysis. This result is suspect even though this compound was not found in any associated blanks.
- UNK = UNKNOWN COMPOUND: Library search result unreasonable or of very low matching quality.
- TOT = TOTAL CONCENTRATION REPORTED: Represents the sum of several compounds detected all belonging to the same chemical class.
- ISO = OR ISOMER: Compound identification is not selective for this isomer only. This result may instead represent the presence of a similar compound comprised of the same atoms bonded together in a different arrangement or substitution pattern.

SAT HC = SATURATED HYDROCARBON

UNSAT HC = UNSATURATED HYDROCABON

HC = HYDROCARBON

PAH - pry nucleur aromatic hydrocarhon

SUB = SUBSTITUTED

MIX = MIXTURE OF 2 OR MORE COELUTANTS

iase. ANALYSIS **ESTIMATED** QUALIFIER COMPOUND NAME SAMPLE CODE NUMBER FRACTION CONCENTRATION pg 2 of 5 (VOA/BNA) UNITS VALUE CHUILIBNA velle 7 3000 TOTIES = (0189 = (010) 150 150 Z300 Paren ראו 100 19 12G CittelVas CH412 RNA 150 σ 600 T() [6 20 unknown subs 30 ami 660 9.3 2200 ло CH413 RNO 460 2 2 TOT auds 670 hix wher 1017in *300)* 2 BNA unknown $\partial \mathcal{O} \mathcal{C}$ alcohel

DEFINITIONS OF QUALIFIER CODES:

<u>9000</u> 3400

SUS = SUSPECTED FALSE POSITIVE RESULT: Compound is either a common laboratory contaminant, or else a possible reaction byproduct (artifact) attributable to the chemical reagents used for sample preparation and analysis. This result is suspect even though this compound was not found in any associated blanks.

AC55

UNK = UNKNOWN COMPOUND: Library search result unreasonable or of very low matching quality.

TOTAL

- TOT = TOTAL CONCENTRATION REPORTED: Represents the sum of several compounds detected all belonging to the same chemical class.
- ISO = <u>OR ISOMER</u>: Compound identification is not selective for this isomer only. This result may instead represent the presence of a similar compound comprised of the same atoms bonded together in a different arrangement or substitution pattern.

SAT HC = SATURATED HYDROCARBON

UNSAT HC = UNSATURATED HYDROCABON

HC = HYDROCARBON

PAH+ prignicieur aromatic hydrocarbon

SUB = SUBSTITUTED

MIX = MIXTURE OF 2 OR MORE COELUTANTS

benta(2)

Q 17.

ALVENE

case 17744

SAMPLE	ANALYSIS	ESTIMATE	5	QUALIF	
NUMBER	FRACTION	CONCENTRAT		CODI	pg 3 of 5
[(VOA/BNA)	VALUE	צדואט		Pg Jar J
CHY15	BNA	44.000	ugle	TOT	pentachlorchypheniil (2)
		315,000		TOT	herachlorobynhery (5)
		200,000		701	hertachlorobypheny (5)
		23,000		(ક્ઇ	Cittie-dimethy Knews Jethyl bankthalene
		43,000	J	्र १वा	decany dro dimethyl uctyl
		,	'		naphthalene (2)
		130,000	اعطالون	TOTKW	Unknowns (4)
7/	1	50,000	١	unk	
CHYIL	BNA	1.9×106	14 K4	101	SAT'D HC (19)
14	(1	82,000	4		Cyclic HC-CITH34 (alkylcychexane)
CHYLT	BNA	1100	49/14	150	benzethiezole, (7H5N'S, 95=16-9 Mathalthichenzethiezole (unt 615=22-5
,		510	7	150	Mathythichenzethiazole (anti 615=22-5-
		1740		101	Mercantchen 20 this 2010 CTHENGE (2)
		340		Unk	Natural Sulfyr subst. aremotic HC
		420		Unk	possi Nitrogen Subst aromatic HC
		850		150	C20 HIZPAH, SUCh as bentolel pyrene
10	14	4200	7	TOTUN	unknowns (7)
CHYIB	IBNA	370	14/KU		carboxylic acid
		(80)	14	ISU	cyclopentaphoninthrene
		270		150	anthracenediane
		2500		150	Czchiz PAH, such as bent-(e) nurras
		18,000	4/	TOT	Sat'd HC (3)
		,			
	1				- -

DEFINITIONS OF QUALIFIER CODES:

- SUS = SUSPECTED FALSE POSITIVE RESULT: Compound is either a common laboratory contaminant, or else a possible reaction byproduct (artifact) attributable to the chemical reagents used for sample preparation and analysis. This result is suspect even though this compound was not found in any associated blanks.
- UNK = UNKNOWN COMPOUND: Library search result unreasonable or of very low matching quality.
- TOT = TOTAL CONCENTRATION REPORTED: Represents the sum of several compounds detected all belonging to the same chemical class.
- ISO = OR ISOMER: Compound identification is not selective for this isomer only. This result may instead represent the presence of a similar compound comprised of the same atoms bonded together in a different arrangement or substitution pattern.

SAT HC = SATURATED HYDROCARBON UNSAT HC = UNSATURATED HYDROCABON

HC * HYDROCARBON

PAH - pay nuclear aromatic hydrocarhon

SUB = SUBSTITUTED

MIX = MIXTURE OF 2 OR MORE COELUTANTS

case 17744 COMPOUND NAME QUALIFIER SAMPLE ANALYSIS **ESTIMATED** CODE NUMBER FRACTION CONCENTRATION (VOA/BNA) בדואט 150 150 wil V9/c BN NYZO .000 SO SO 000 Uin la 246 MONDE - CUC 147/15 6300 ALN KEIN 7000 tOんいひんち

DEFINITIONS OF QUALIFIER CODES:

- SUS = <u>SUSPECTED FALSE POSITIVE RESULT:</u> Compound is either a common laboratory contaminant, or else a possible reaction byproduct (artifact) attributable to the chemical reagents used for sample preparation and analysis. This result is suspect even though this compound was not found in any associated blanks.
- UNK = UNKNOWN COMPOUND: Library search result unreasonable or of very low matching quality.
- TOT = TOTAL CONCENTRATION REPORTED: Represents the sum of several compounds detected all belonging to the same chemical class.
- ISO = OR ISOMER: Compound identification is not selective for this isomer only. This result may instead represent the presence of a similar compound comprised of the same atoms bonded together in a different arrangement or substitution pattern.

SAT HC = SATURATED HYDROCARBON

UNSAT HC = UNSATURATED HYDROCABON

HC = HYDROCARBON

PAM = pery nucleur aromatic hydrocarbon

SUB - SUBSTITUTED

MIX = MIXTURE OF 2 OR MORE COELUTANTS

case 17744 COMPOUND NAME QUALIFIER SAMPLE ANALYSIS **ESTIMATED** NUMBER FRACTION CONCENTRATION CODE (VOA/BNA) VALUE UNITS BNA CHYZZ (₀O **℃**2 24() OPP acia 10 Mka JOHIN . 3 4700 Unknown $\mathcal{C}\mathcal{D}$

DEFINITIONS OF QUALIFIER CODES:

- SUS ≖ SUSPECTED FALSE POSITIVE RESULT: Compound is either a common laboratory contaminant, or else a possible reaction byproduct (artifact) attributable to the chemical reagents used for sample preparation and analysis. This result is suspect even though this compound was not found in any associated blanks.
- UNK = UNKNOWN COMPOUND: Library search result unreasonable or of very low matching quality.
- TOT = TOTAL CONCENTRATION REPORTED: Represents the sum of several compounds detected all belonging to the same chemical class.
- ISO = OR ISOMER: Compound identification is not selective for this isomer only. This result may instead represent the presence of a similar compound comprised of the same atoms bonded together in a different arrangement or substitution pattern.

SAT HC * SATURATED HYDROCARBON UNSAT HC = UNSATURATED HYDROCABON

HC = HYDROCARBON

PAH - prignucteur aromatic hydrocarhon

SUB - SUBSTITUTED

MIX = MIXTURE OF 2 OR MORE COELUTANTS

Project No.: <u>3263-09</u>

7.3 INORGANIC DATA VALIDATION REPORT: CASE NUMBER 17744

7.3.1 Overview

The set of samples for Case 17744 contained 10 unfiltered aqueous samples and 14 solid samples that

were analyzed through the CLP RAS by Keystone Engineering (KEYTX). Included in the sample set

were an unfiltered field blank, an unfiltered field duplicate pair, and a solid field duplicate pair.

7.3.2 **Summary**

All analytes were successfully analyzed in all samples. Areas of concern with respect to data usability

are listed according to the seriousness of the problem. These include the following items:

7.3.3 Major Issues

Issues affecting or changing the confidence concerning the presence or absence of analytes and issues

related to severe quantitative bias are discussed below.

The calibration blanks contained calcium and selenium at levels equal to or greater than the

instrument detection limit (IDL). The solid preparation blank contained selenium at a level

above the IDL, and the aqueous field blank contained aluminum, arsenic, calcium, iron,

magnesium, and zinc at levels above the IDLs. The reported results for these analytes in the

affected samples that are less than five times the highest blank concentration have been

flagged (B) and may be artifacts of blank contamination (i.e., false positives).

Results for selenium in samples MCJE02 and MCJE18 and lead in samples MCJE12 through

7-9

MCJE15, MCJE17, and MCJE18 have been corrected by the reviewer. The laboratory

miscalculated or misreported the affected results.

R-51-5-2-15

Project No.: <u>3263-09</u>

7.3.4 Minor Issues

Data qualifications related to precision, accuracy, and bias in reported results and detection limits are

discussed below.

• The inductively coupled plasma (ICP) serial dilution results for aluminum and iron exceeded

the 10 percent control limit in aqueous sample MCJE07. Therefore, all reported results for

these elements in similar samples have been qualified as estimated (J), except the field blank.

A low correlation coefficient for arsenic occurred for the method of standard addition (MSA)

analysis of one sample. The result is considered estimated (J) because a low correlation

coefficient suggests a lack of linearity for the analytical curve generated by this method.

Significant imprecision was noted between furnace and plasma results for lead in five solid

samples. Because the laboratory satisfactorily performed all the required quality

assurance/quality control (QA/QC) for the plasma analysis of lead, two valid sets of data are

present for all solid samples. The lead results in the affected samples have been qualified as

estimated (J); sample inhomogeneity may be responsible for the observed differences. Good agreement was noted between the two methods for the remainder of the solid samples and

for aqueous sample MCJE08.

Field duplicate imprecision for aluminum, barium, cobalt, copper, iron, lead, manganese,

potassium, and zinc was noted between surface water samples MCJE08 and MCJE10.

Therefore, results for these analytes should be considered estimated in all similar samples and

have been qualified as (J). It is possible that a higher level of suspended particulate matter

was present in the aliquot taken for digestion of sample MCJE08 than in the aliquot taken for

sample MCJE10; this could explain why higher levels occurred for most analytes in MCJE08.

Field duplicate imprecision also occurred for copper between solid samples MCJE19 and

MCJE22. Therefore, results for this analyte should be considered estimated (J) in all similar

surface soil samples.

Project No.: 3263-09

7.3.5 Notes

- Good agreement between plasma and furnace was noted for arsenic in sample MCJE15. The instrument level was above 1,500 ug/l.
- Post-digestion spike (PDS) recoveries were low for selenium analyses in samples MCJE17, MCJE20, and MCJE22. This would suggest that the results for the affected samples may be biased low; however, all three results have been previously qualified because of blank contamination.
- The data were reviewed in accordance with the National Functional Guidelines for Evaluating Inorganic Analyses, with Region III Modifications.

Linfield Industrial Park

Project No.: 3263-09

TABLE 1A SUMMARY OF QUALIFIERS ON DATA SUMMARY AFTER DATA VALIDATION

ANALYTE	SAMPLES AFFECTED	POSITIVE VALUES	BIAS	COMMENTS*
Al	MCJ302, MCJE03, and MCJE04	В	high	(A) (15.1 ug/l)
As	MCJE02 through MCJE14, MCJE17 through MCJE19, MCJE23, and MCJE26	В	high	(A) (5.4 ug/l)
Fe	MCJE02 through MCJE04	В	high	(A) (12.5 ug/l)
Se	all positive results	В	high	(A) (2.7 ug/l)
Zn	MCJE02 through MCJE05, MCJE07, MCJE09, and MCJE10	В	high	(A) (15.8 ug/l)
Αl	MCJE05 through MCJE10	j		(B) (24.5 percent)
Fe	MCJE05 through MCJE10	1		(B) (17.5 percent)
As	MCJE16	j		(C) (0.7442)
Al	MCJE05 through MCJE10	J		(D) (142 percent)
Ва	MCJE05 through MCJE10	J		(D) (94 percent)
Со	MCJE05 through MCJE10	J		(D) (128 percent)
Cu	MCJE05 through MCJE10	1		(D) (153 percent)
Fe	MCJE05 through MCJE10	1		(D) (146 percent)
Pb	MCJE05 through MCJE10	1		(D) (183 percent)
Cu	MCJE15 through MCJE23 and MCJE26	J		(D) (82 percent)
Mn	MCJE05 through MCJE10	1		(D) (105 percent)
К	MCJE05 through MCJE10	J		(D) (36 percent)
Zn	MCJE05 through MCJE10	1		(D) (132 percent)
Pb	MCJE11, MCJE13, MCJE22, MCJE23, and MCJE26	J		(E) (68, 74, 99, 66, and 113 percent)

^{*}Comments are defined in table 1B.

Linfield Industrial Park

Project No.: 3263-09

e della Efek

TABLE 1B CODES USED IN COMMENTS COLUMN

- A = The blanks contained a result for this analyte that was greater than the IDL. (The highest blank value is in parentheses.) The reported results were less than five times this blank value and may be biased high.
- B = The ICP serial dilution result was outside the control limits. (The percent difference between the initial and diluted result is in parentheses.) The reported results are estimated.
- C = Because of a low correlation coefficient (the coefficient is in parentheses), the positive result be should be considered estimated.
- D = Field duplicate imprecision occurred for this analyte (the relative percent difference is in parentheses). The reported results are considered estimated.
- E = Imprecision between the graphite furnace and plasma values occurred for lead in this sample (the relative percent differences between these results for each sample are in parentheses, respectively). The result is considered estimated.

7-13

SECTION 8.0

Linfield Industrial Park

Project No.: 3263-09

8.0 TOXICOLOGICAL EVALUATION

8.1 SUMMARY

Metals were detected at notable concentrations in soil from the transformer area, the drums west of

the distillery, and the trash dump area. It could be prudent to avoid contact with the high-level lead

and arsenic concentrations because neither noncarcinogenic nor carcinogenic risks can be ruled out.

Polychlorinated biphenyls (PCBs) were detected above recommended guidelines in the soil sample

taken from the base of the transformer; mainly because of carcinogenic risk, it could be prudent to

avoid contact with this soil. It may be prudent to avoid prolonged contact with the soil from the

southeastern edge of the trash dump because of notable polycyclic aromatic hydrocarbon (PAH)

concentrations, although adverse effects are not necessarily indicated. PAHs can also pose some

increased cancer risk. Reported concentrations of 1,2,4-trichlorobenzene (1,2,4-TCB), toluene,

ethylbenzene, xylenes, ketones, cyanide, cadmium, and antimony in soil are not expected to pose

significant hazards.

Cadmium, phenol, 1,1,1-trichloroethane (1,1,1-TCEA), 4-methylphenol (4-MP), and PAHs were

detected in river sediment at concentrations not expected to pose significant noncarcinogenic direct-

contact hazards. The potential for bioconcentration of sediment cadmium by aquatic organisms

could not be ruled out.

4-Nitrophenol (4-NP) was detected in drainage ditch water at a concentration not expected to pose a

significant environmental or human health threat. Copper, iron, lead, zinc, and cyanide were

detected in the river above Ambient Water Quality Criteria (AWQCs); potential effects on sensitive

aquatic organisms cannot be ruled out. Metals in the sample taken from the river at a drinking water

intake were below health-based criteria and are not expected to pose a significant hazard. Metals in

the river water are not expected to pose a significant noncarcinogenic health threat to swimmers. A

theoretical increase in overall cancer risk due to lead and beryllium in river water cannot be ruled out.

Xylenes were detected in the public supply well far below drinking water criteria; no adverse effects

are indicated. Sodium was detected in one home well above a concentration recommended to

minimize sodium intake; adverse effects on the general population are not indicated.

Linfield Industrial Park

Project No.: 3263-09

8.2 SUPPORT DOCUMENTATION

8.2.1 Organics

PCBs were confidently and tentatively detected in soil from the base of the transformer. The confidently detected result was reported at 300,000 ug/kg. PCBs were also detected in soil south of the trash dump area at 460 ug/kg. PCBs were at one time used in transformers because they are stable, thermoplastic, and nonflammable.¹ PCBs are also extremely persistent and stable in the environment and can bioconcentrate in the food chain.¹ EPA has recommended guidelines of 25,000 ug/kg for industrial or restricted access areas and 10,000 ug/kg for residential or unlimited access areas.² Recently, a protective quantifiable concentration of 1,000 ug/kg has been recommended for residential areas.³ The reported concentration at the on-site "hot spot" exceeds all recommended guidelines.

Prolonged contact with high concentrations of PCBs can be associated with chloracne and liver damage.¹ However, nonoccupational human toxicity due to PCBs has not been reported for people in the United States.⁴ The main concern for human exposure to PCBs is the classification of these compounds as Group B2 (probable human) carcinogens. For a 15-kilogram child incidentally ingesting 200 mg of this soil 350 days per year for six years (an extremely conservative scenario), the estimated excess upper-bound cancer risk would be approximately 2E-3.⁵ For a 70-kilogram adult (100 mg soil per day for 30 years), the risk would be approximately 1E-3.⁵ Because any contact with carcinogens can theoretically increase overall cancer risk, it would be prudent to avoid contact with this soil.

PAHs were confidently and tentatively identified in soil and sediment throughout the site, as well as in background soil. PAHs are common environmental contaminants because they occur in coal, tar, and the products of the combustion of organic material.⁶ Coal tar, which is rich in PAHs, was once used for the extraction of dye compounds such as benzene, toluene, naphthalene, phenol, and carbazole.⁷ These compounds, as well as other compounds associated with dye synthesis, were found on and near the site. Dye synthesis is not known to have occurred on site. The plastics industry is reported to be an important market for dyes; plastics manufacturing may have occurred on site (see section 1.3).⁷ PAHs can also be naturally occurring up to as much as approximately 10,000 ug/kg.⁸ At this site, PAHs were confidently detected up to 62,400 ug/kg in on-site soil, with a much higher concentration of 406,190 ug/kg at sample S-6 (southeastern edge of trash dump), compared to 758 ug/kg in background soil. Sample S-6 was described as containing large amounts of organic material (see sample log).

Linfield Industrial Park

3263-09

Project No.:

PAHs have been associated with skin irritation at high concentrations. Although such effects are not necessarily indicated from reported concentrations, it may be prudent to avoid prolonged contact with the highest-concentration soil. Even if a 15-kilogram child were exposed daily to 200 mg of the most contaminated soil or sediment, significant noncarcinogenic effects would not be indicated due to these PAHs, separately or together, based on a comparison between estimated intakes and available risk reference doses (RfDs) [total Hazard Quotient (HQ) (ratio of intake to RfD), 0.07].5.9 Estimated total cancer risks from PAHs in on-site soil ingested at this rate would be up to approximately 4E-4, using worst-case (maximum) concentrations for each PAH.5.9.10 This can be compared to the cancer risk of 6E-7, which could be estimated for background soil.5.9.10 The maximum estimated oral cancer risk for sediment using the same exposure scenario would be

An examination of the pattern of sediment contamination reveals that concentrations of total PAHs were lowest in the drainage ditch and downstream samples and highest in the upstream sample. In spite of their lipophilicity, PAHs tend to be metabolized by many aquatic organisms, reducing bioconcentration potential and secondary exposure to fish consumers, if any.¹¹

1,2,4-TCB was detected in one on-site soil sample at 2,300 ug/kg. The 1,2,4-TCB, which can be used as a dielectric fluid in transformers, was detected in the sample obtained at the base of the transformer.¹ 1,2,4-TCB can cause skin irritation, neurological effects, and liver damage at high (such as occupational industrial) exposures.¹ Comparing a conservative estimate of 1,2,4-TCB intake from exposure to this soil (15-kilogram child ingesting 200 mg soil 350 days per year for six years) to the RfD, it can be seen that adverse noncarcinogenic effects would not be anticipated (HQ = 0.003).⁹

Toluene (120 ug/kg), ethylbenzene (100 ug/kg), and xylenes (690 ug/kg) were detected in one soil sample (5-2, at the drums west of the distillery). These compounds are volatile solvents that can be irritants and neurotoxicants at high concentrations.¹ They tend to be associated with fuels or paints and are fairly mobile in the environment.¹ Xylenes and ethylbenzene can also be used in the manufacture of plastics, and toluene can be a component of dyeing wastes.¹² Comparison between conservatively estimated intakes and the RfDs reveals that noncarcinogenic impacts are not indicated for these compounds, separately or together (HQs for toluene, ethylbenzene, and xylenes are 8E-6, 1E-5, and 4E-6, respectively).⁵

R-51-5-2-15 **8-3**

approximately 2E-5.

(भ्राम्हण्डा) (१४७) Site Name:

Linfield Industrial Park

Project No.: 3263-09

Two ketones were also detected in the soil sample taken from the drum area west of the distillery: 2-butanone (160 ug/kg) and 4-methyl-2-pentanone (340 ug/kg). These ketones are solvents that can have irritant effects. However, comparison of conservatively estimated intakes to the RfDs indicates that these compounds would not be expected to pose a significant noncarcinogenic hazard, separately or together (HQs of 2-butanone and 4-methyl-2-pentanone are 4E-5 and 8E-5, respectively). 5,9

Phenol (75 ug/kg) and 4-MP (95 ug/kg) were detected in midstream river sediment. Phenol is a strong irritant that can be used as a disinfectant at low concentrations.¹ It is a potential component of dyeing wastes.¹² 4-MP is a disinfectant that can be used in the manufacture of chemicals, dyes, and plastics.¹ 4-MP is also an irritant.¹ Comparison of conservatively estimated intakes to the RfDs indicates that these compounds would not be expected to pose a significant noncarcinogenic direct contact hazard, individually or together (HQs of phenol and 4-MP are 1.6E-6 and 2.4E-5, respectively).⁹ These compounds are generally not very persistent in the aquatic environment, and biodegradation is usually significant.^{11,13}

1,1,1-TCEA was detected in upstream river sediment at 3 ug/kg. This solvent can affect the skin, cardiovascular system, and nervous system at high levels.¹ However, at the reported trace concentration, no significant impacts are indicated.^{5,9} This compound is not very persistent in the aquatic environment.^{11,13}

4-NP was detected in drainage ditch surface water at approximately 1 ug/l, well below the chronic fresh-water Lowest Observed Effects Level (LOEL) of 150 ug/l for nitrophenols.¹⁴ Nitrophenols are used in pesticide and dye synthesis.¹ 4-NP is reported to affect aquatic organisms at concentrations exceeding 4,000 ug/l.¹³ The 4-NP concentration is also well below the level that would be of concern for human ingestion of the water, using an RfD of 6.2E-2 mg/kg/day and assuming one liter per day consumption by a 15-kilogram child (HQ = 7E-5).¹⁵

Xylenes were detected in the PSW-1 sample at approximately 1 ug/l. The properties of xylenes were discussed previously. The PSW-1 concentration is well below the enforceable Maximum Contaminant Level (MCL) and purely health-based MCL Goal (MCLG) of 10,000 ug/l. No adverse effects are indicated for this trace concentration of xylenes.

Linfield Industrial Park

in the second

Project No : 3263-09

An aliphatic alcohol (approximately 5 ug/l) and saturated hydrocarbons (approximately 8 ug/l) were also tentatively identified in PSW-1. The alcohols are generally solvents that can be irritants at high concentrations.¹⁷ The saturated hydrocarbons could include solvents, plant constituents, etc. No specific toxicological assessment of unknown compounds can be made.

Methylbenzene sulfonamide, a fungicide, was tentatively identified in the midstream sediment sample. Few data are available for this compound. However, an oral wild bird LD50 (dose lethal to 50 percent of an experimental population) of 75 mg/kg has been reported. In soil sample S-3 (taken from the tank farm), other sulfur-containing compounds such as benzothiazole and nitrogen-containing compounds were tentatively identified. Benzothiazole has an oral mouse LD50 of 900 mg/kg. In Sulfur- and nitrogen-containing compounds are widely used in dye synthesis. 7,19

8.2.2 Inorganics

Metals were detected at notable concentrations in four soil samples: S-1 (at the base of the transformer), S-2 (at the drums outside the shed west of the distillery), S-6 (at the southeastern edge of the trash dump), and S-7 (south of the drums near the trash dump).

Lead was detected up to 358 mg/kg in soil samples (excluding S-2). Lead has been known to affect the hematopoietic, renal, and nervous systems and is classified as a Group B2 carcinogen. 9,18 Children, because of their high absorption rate and developing nervous systems, are especially vulnerable. 6 These soil lead concentrations are below a recommended clean-up guideline of 500 to 1,000 mg/kg. 20 Lead binds strongly to soil, decreasing its availability. Significant impacts are not necessarily expected for these concentrations of lead in soil, although it is generally desirable to minimize all lead exposure. Lead was detected at 4,810 mg/kg in soil sample S-2. Inadvertent ingestion of 200 mg soil would result in a lead intake of 962 ug. Daily lead intake from food, air, and dust is reported to range from 60.2 (rural nonsmoker) to 118.2 (urban smoker) ug/day for adults and from 46.6 (rural) to 137.6 (urban) ug/day for children. 21 Chronic exposure could be undesirable, as increases in blood lead have been reported from chronic lead exposure (35 days or longer). 22 Effects from increased blood lead range from enzyme inhibition through anemia and encephalopathy in extreme cases. 6 It would be prudent to avoid prolonged contact with the apparent "hot spot" at S-2, especially for children.

Men

Site Name: Project No.: Linfield Industrial Park

<u>3263-09</u>

Arsenic was detected in on-site soil up to 372 mg/kg; the highest concentration was detected at sample S-1. Arsenic has been used in pesticides, pharmaceuticals manufacturing, glass, textiles, and metal alloys, 1 Arsenic is noted for skin toxicity and gastrointestinal and neurological symptoms, 1 The concentrations in soil samples S-1, S-2, and S-7 would result in an HQ greater than 1.0, assuming frequent direct contact (incidental ingestion of 200 mg soil by a 15-kilogram child).9 Therefore, it would be prudent to avoid direct contact with soils from these areas, although arsenic is generally strongly bound to soil and the scenario is extremely conservative in assuming 100 percent absorption. Arsenic is also classified as a Group A (human) oral carcinogen.⁵ Using the oral cancer slope factor (CSF) for arsenic of 1.75 per mg/kg/day and the above conservative scenario (also assuming exposure duration of six years and the very conservative exposure frequency of 350 days per year), an upperbound cancer risk of approximately 7E-4 can be estimated for children if they were in almost daily contact with the highest-level soil sample.⁵ For adults (same scenario, but assuming 100 mg soil per day, 70-kilogram body weight, and 30 years exposure duration), the HQ for the highest-level arsenic only would exceed 1.0; the estimated cancer risk would be approximately 4E-4. Because of the high CSF for arsenic, it would be prudent to avoid contact with the highest-level soils and is generally desirable to minimize contact with arsenic. However, arsenic, like lead, is a naturally occurring element for which it is virtually impossible to attain zero exposure.

Cyanide was detected in soil at the base of the transformer and at the drums west of the distillery up to 1.8 mg/kg. Cyanides can be used in electroplating and other industries.¹ At high concentrations (e.g., occupational), cyanides can cause nausea, skin irritation, and eventually interfere with the ability of red blood cells to release oxygen to tissues (its fatal mechanism).¹ However, cyanide is not generally considered to be a major environmental problem because of its lack of persistence; it is readily metabolized at low concentrations.²³ Based on the conservative estimated intake for children, an oral HQ of 1E-3 can be calculated.^{5,9} Significant noncarcinogenic impacts due to cyanide are not expected for this type of contact with soil.

Antimony was detected at a notable concentration (11 mg/kg) in S-7. Antimony is used in metal alloys, plasticizers, paints and glazes, and ammunition and explosives. It can cause skin irritation and gastrointestinal effects at high concentrations. Using the conservative scenario for child soil exposure, the reported concentration of antimony is not expected to pose a significant noncarcinogenic hazard (HQ ≈ 0.3).

Linfield Industrial Park

Project No.: 3263-09

Cadmium was detected up to 2.6 mg/kg in on-site soil and up to 2.2 mg/kg in sediment from the Schuylkill River (cadmium was detected upstream, midstream, and downstream of the site, but was not detected in the on-site drainage ditch). Cadmium is a common environmental contaminant that can cause toxicity to the kidneys, prostate, and blood after high-level industrial exposure.¹ The reported cadmium concentrations would not be expected to pose a significant noncarcinogenic hazard (HQ up to 0.07, using the conservative child exposure scenario).⁵ Cadmium tends to bind strongly to sediment and was not detected in the surface water. Bioconcentration of cadmium can be significant for certain freshwater species, including caddisflies, brook trout, and mosquitofish [reported bioconcentration factors (BCFs) range from 2 to 4,190].²⁴ The reported cadmium concentrations in fish and shellfish used as food in a typical diet range from 0.1 to 1 mg/kg.⁶

Notable concentrations of metals were not reported for soil sample 5-9, where stressed vegetation was observed.

The close proximity of state game lands introduces the possibility that ecological receptors may be exposed to on-site metals. Potential receptors include deer, opossum, squirrels, rabbits, and mice. Most of these animals would be expected to venture only rarely onto the most contaminated areas of the site, because of the lack of cover from trees and the presence of houses and roads in the northern area. Because of the proximity of the river, animals such as ducks, geese, and gulls may be present; however, these birds are expected to spend more time in and very near the water. Both lead and arsenic have been reported to affect rodents, large mammals such as cattle, and fowl at sufficient concentrations.²⁵ In fowl, the effects of arsenic toxicity include inflammation of the gizzard and liver, and the effects of lead toxicity include gastrointestinal effects and neuropathy.²⁵ Gastrointestinal effects and neurotoxicity are reported in larger animals for both metals.²⁵ With the information available at this stage of site investigations, it is difficult (and beyond the current scope) to estimate effects on such animals or their consumers, but a slight possibility of exposure to these animals cannot be ruled out.

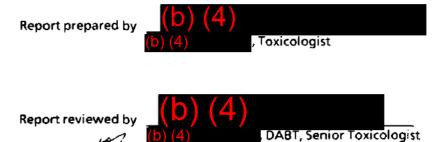
Linfield Industrial Park

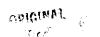
Project No.: 3263-09

Metals were also detected at notable concentrations in surface water samples obtained from the Schuylkill River and the drainage ditch. Aluminum was detected in all samples, ranging from 119 ug/l (at the CUHWC intake) to up to 1,560 ug/l (downstream Schuylkill River), in excess of the AWQC of 87 ug/l.²⁶ For other metals, the only exceedances of AWQCs occurred in the midstream and downstream river samples: copper (23.8 ug/l midstream, 55.6 ug/l downstream; AWQC: 12 ug/l), iron (1,380 ug/l midstream, 3,470 ug/l downstream; AWQC: 1,000 ug/l), lead (19 ug/l midstream, 59.9 ug/l downstream; AWQC: 3.2 ug/l), zinc (176 ug/l midstream, 301 ug/l downstream; AWQC: 110 ug/l), and cyanide (11.7 ug/l midstream; AWQC: 5.2 ug/l).¹⁴ Where AWQCs are exceeded, potential effects on sensitive aquatic species cannot be ruled out. Lead is especially undesirable in an aquatic environment because of its tendency to bioconcentrate (reported BCFs range from approximately 40 in vertebrate fish to 1,700 in a snail).²⁷ Potential effects on fish consumers, if any, cannot be specifically assessed without fish-tissue analysis.

3.1

R-51-5-2-15


Because the river is ultimately used for drinking water purposes at the CUHWC intake, it is possible to examine this sample (SW-5) for pretreatment metals. In this sample, the only metals that exceeded drinking water criteria were aluminum (119 ug/l) and manganese (113 ug/l), which exceeded the non-health-based aesthetic Secondary MCLs (SMCLs) of 50 ug/l.²⁸ The metals in this sample would not be expected to produce adverse health effects on the general population, even if the water were consumed in this condition.


It is also possible to examine the surface water results with regard to recreational use, such as swimming. The most conservative approach includes comparison of the samples with drinking water criteria or RfDs. SMCLs were not considered, but the health-based RfDs for chemicals such as aluminum, iron, and manganese were considered. Even if the river water were consumed at the rate of one liter per day by a 15-kilogram child, neither the individual HQs nor the total Hazard Index (HI) (sum of HQs) would exceed 1.0.5.9 In actuality, the estimated intake of water is much less, about 0.05 liter per hour of swimming.²⁸ For chemicals with drinking water criteria, the proposed MCL of 1 ug/l was exceeded by beryllium in SW-4 (1.1 ug/l), and the Action Level of 15 ug/l was exceeded by lead in SW-2 (19 ug/l) and SW-4 (59.9 ug/l).^{29,30,31,32} For these metals, carcinogenicity is a potential risk of concern because both are classified as Group B2 carcinogens. No EPA consensus for an oral CSF has been established for lead. For beryllium at this concentration, a 70-kilogram adult swimming seven days per year, two hours per day, for 30 years, ingesting 0.05 liter per hour, an increased oral cancer risk of approximately 6E-8 can be estimated.⁵ Therefore, it can be stated that potential risks to swimmers in the river are due to the carcinogenicity of lead and beryllium; according to the nothreshold theory of carcinogenicity, any contact with carcinogens can increase overall cancer risk.

8-8

Project No.: 3263-09

Sodium was detected in water from HW-1 at 21,900 ug/l, exceeding a guideline recommended by the American Heart Association (20,000 ug/l) to reduce the contribution of drinking water to total sodium intake.³³ While this can be important for persons on sodium-restricted diets, adverse health effects are not expected for the general population.

Site Name:

Linfield Industrial Park

Project No.: 3263-09

SOURCES

1. Sittig, M. 1985. Handbook of Toxic and Hazardous Chemicals and Carcinogens. Second Edition. Noyes Publications, Park Ridge, New Jersey.

- 2. Federal Register. 1987. Polychlorinated Biphenyls: Spill Cleanup Policy. Final Rule. Volume 52, Number 63. April 2, 1987.
- United States Environmental Protection Agency. 1990. A Guide on Remedial Actions at Superfund Sites With PCB Contamination: Quick Reference Fact Sheet. Office of Emergency and Remedial Response, Hazardous Site Control Division, August 1990.
- Technical Resources, Incorporated for United States Department of Health and Human Services. 1988. Toxicological Profile for Polychlorinated Biphenyls. Draft. Agency for Toxic Substances and Disease Registry, Atlanta, Georgia.
- 5. United States Environmental Protection Agency. 1992. Integrated Risk Information System (IRIS).
- 6. Doull, J., C.D. Klaassen, and M.O. Amdur. 1986. Casarett and Doull's Toxicology: The Basic Science of Poisons. Third Edition. MacMillan Publishing Company, New York.
- 7. Kent, J.A., Editor. 1983. Riegel's Handbook of Industrial Chemistry. Eighth Edition. Van Nostrand Reinhold Company, New York.
- 8. Dragun, J. 1988. The Soil Chemistry of Hazardous Materials. HMCRI/Silver Spring, Maryland.
- United States Environmental Protection Agency. 1992. Health Effects Assessment Summary Tables; Annual FY92. Office of Emergency and Remedial Response, Washington, D.C.
- 10. Clement Associates, Incorporated. 1988. Interim Final Report: Comparative potency approach for estimating the cancer risk associated with exposure to mixtures of polycyclic aromatic hydrocarbons. Fairfax, Virginia, April 1988.

Site Name: <u>Linfield Industrial Park(Gt)</u>

Project No.: 3263-09

11. Versar, Incorporated for United States Environmental Protection Agency. 1979. Water-Related Fate of 129 Priority Pollutants. Monitoring and Data Support Division, Washington, D.C. EPA 440/4-79-029.

- 12. Industrial Wastes. United States Environmental Protection Agency Development Documents:

 Monitoring and Compliance Information. Volume II.
- 13. Verschueren, K. 1983. Handbook of Environmental Data on Organic Chemicals. Second Edition. Van Nostrand Reinhold Company, New York.
- United States Environmental Protection Agency. 1987. Update Number 2 to Quality Criteria for Water 1986. Office of Water Regulations and Standards, Criteria and Standards Division, Washington, D.C.
- 15. Smith, R.L. 1992. United States Environmental Protection Agency Region III, Risk-Based Concentration Table, Second Quarter 1992. United States Environmental Protection Agency Region III, Philadelphia, Pennsylvania, April 14, 1992.
- United States Environmental Protection Agency. 1991. National Primary Drinking Water Regulations; Final Rule. 56 Federal Register 3526-3614, January 30, 1991.
- 17. Clayton, G.D., and F.E. Clayton. 1981. Patty's Industrial Hygiene and Toxicology. Third Revised Edition. John Wiley and Sons, New York.
- 18. Sax, N.I., and R.J. Lewis, Sr. 1989. Dangerous Properties of Industrial Materials. Seventh Edition. Van Nostrand Reinhold Co., New York.
- 19. Windholz, M., et al. 1983. The Merck Index. Tenth Edition. The Merck Company, Incorporated, Rahway, New Jersey.
- 20. United States Environmental Protection Agency. 1989. Interim Guidance on Establishing Soil Lead Cleanup Levels at Superfund Sites. September 7, 1989. OSWER Directive 9355.4-02.
- 21. United States Environmental Protection Agency. 1984. Air Quality Criteria for Lead. Environmental Criteria and Assessment Office. Research Triangle Park, North Carolina. EPA 600/8-83-028.

Site Name: Project No.: **Linfield Industrial Park**

3263-09

22. United States Environmental Protection Agency. 1985. Health Advisories. Office of Drinking Water, Washington, D.C.

- 23. United States Environmental Protection Agency. 1980. Ambient Water Quality Criteria for Cyanides. Office of Water Regulations and Standards, Criteria and Standards Division, Washington, D.C. EPA 440/5-80-027.
- 24. United States Environmental Protection Agency. 1983. Revised Section B of Ambient Water Quality Criteria for Cadmium. Draft. August 19, 1983.
- 25. National Library of Medicine. 1992. Hazardous Substances Data Bank. Records for non-human toxicity of arsenic and lead.
- United States Environmental Protection Agency. 1988. Ambient Aquatic Life Water Quality Criteria for Aluminum. Office of Research and Development, Duluth, Minnesota. EPA 440/5-86-006.
- 27. United States Environmental Protection Agency. 1980. Ambient Water Quality Criteria for Lead. Office of Water Regulations and Standards, Criteria and Standards Division, Washington, D.C.
- 28. United States Environmental Protection Agency. 1989. Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual (Part A). Interim Final. Office of Emergency and Remedial Response, Washington, D.C. December 1989.
- 29. United States Environmental Protection Agency, April 1991. Drinking Water Regulations and health Advisories. Office of Water, Washington, D.C.
- 30. United States Environmental Protection Agency. 1990. National Primary Drinking Water Regulations. 40 Code of Federal Regulations 141, Subparts 8 and G. July 1, 1990.
- 31. United States Environmental Protection Agency, July 25, 1990. 55 Federal Register 30370-30448.

Site Name: <u>Li</u>

Linfield Industrial Park

Project No.: <u>3263-09</u>

32. United States Environmental Protection Agency. 1991. Maximum Contaminant Levels Goals and National Primary Drinking Water Regulations for Lead and Copper; Final Rule. 56 Federal Register 26460-26564, June 7, 1991.

33. Federal Register. 1985. National Primary Drinking Water Regulations; Synthetic Organic Chemicals, Inorganic Chemicals, and Microorganisms; Proposed Rule. Volume 50, Number 219. November 13, 1985.

APPENDIX A

PROJECT NAME: LUNGIOLD	End	ush	wil	Park				TE N			598		†j.,
SUPPORT DOC ORGANIC			IS L		TAC	A PA	CKA	AGE					
TYPE OF ANALYSIS: Law creat	مند												
.2	~~~	77		_Chy 00:-26									
REVIEWER: (b) (4)	79	<u> </u>											
REVIEW DATE : M 04	199	72											
v			•										
	_												
THE FOLLOWING TABLE INDICATES AREAS WHICH WERE EXAMINED IN				XAMINI TAIL	ED			ARE.		DOCU	MEN TACH	TATIO	
DETAIL, THE IDENTIFIED PROBLEM AREAS, AND SUPPORT DOCUMENTAT ATTACHMENTS:	ION	CHE OF FOO FOR CO	CK (V TNOT MME) IF YE TE LETT NTS BEI	ER LOW	OR FO	TONTO	IF Y	BER				
	4LL APPLICABLE	VOA	BNA	PEST/PCB	ALL APPLIE	VOA	BWA	PESTAGE	ALL APPLICAS	VOA	BNA	PEST/ACE	
HOLDING TIMES	7				<u> </u>								ļ
BLANK ANALYSIS RESULTS; TARGET COMPOUNDS	Ż	\vdash		1	7				1	_		\neg	ļ
SLANK ANALYSIS RESULTS: TENTATIVE I.D.s	~			1	V				7				
SURROGATE SPIKE RESULTS	V			11	V			_	V				į
MATRIX SPIKE RESULTS					/				1				
DUPLICATE ANALYSIS RESULTS	Z												į
TARGET COMPOUND MATCHING QUALITY													
TENTATIVELY IDENTIFIED COMPOUNDS													
DETPP & BEB SPECTRUM TUNE RESULTS									L	<u> </u>			
GC INSTRUMENT PERFORMANCE		├		└					<u> </u>				ļ
INITIAL CALIBRATIONS	4	\vdash		\vdash					<u> </u>	ļ			
CONTINUING CALIBRATIONS	-			 -			_		<u> </u>				
QUANTITATION OF RESULTS	<u> </u>	┼─┤		├ ──╂		 -			<u> </u>	-			!
COMMENTS:				·									
		_		*,									
						···- <u>-</u> · ·							
								_					

BLANK ANALYSIS RESULTS FOR TARGET COMPOUNDS

ĺ			BLAN	<u>IK AN</u>	ALYSIS	RESU	LTS	S FOR TARGET COMPOUNDS
	FRAC	TION	TYPE CO	XIRTAM DA	SAMPLE #	SOURCE OF		
	N II	\mathcal{M}	70W	<u>a</u> w	VBJk ZE	Ach	ļ	43 Mes 16.50g & (1)
	V(lab	Cel		Jan	ł	372 9(Ptone 3.7 vg) 0 (2)
			Lap	bor.				
		<u> </u>	[•	VBERAT			434 Mech 8,2 vgl (1)
			· · · \		1		}	377 acetone 25 1910 (2)
ĺ			·		ļ		ł	
					VBCKOC			437 MUCIZ 58 418 (1)
Ì			' !	,	VIJALIA		Ì	371 ACHONE 152 CIP (2)
		1	· ~	/	}	}	}	672 2-10stanone 3-3 09/0(2)
4			10	a) d				421 MCC/2 2750916
			lab	1 (1	VB)KT7	- 1		374 acetone 20 3 vine
			lab	blk		- 1	}	
١		 	·		N3)HK			423 mg()2 29.0 04/P (21
-	 	\	1		AL SIGNO		Į	377 ((etene_ 18.6 vg) (2)
-	l	1 [·		1		7,
		 			1011 (442 moc/2 (3.509/8(1))
j			ľ		VB)kW4		}	353 CICHONE 19.20918(1)
١	- 1		l			1		7/450 () ()
ļ		{						452 - 415
ļ	- 1				VB)KA4	}	}	376 a(etone 27-1 ug/6(1)
	ł			/			Ì	200 st (16/42 2)5/(04/6/6)
١				·				
			low.	ВQ	CH424	ii Aara		374 actions 6.7 (4) (2)
-	- 1		field		, ,	HMS	4 4	374 acrtone 6.7 (y) P(2)
ĺ) / (2)	100 M				
-	_		Som	06	C) 425	MNV	(33 G(4ton) 7,500/(2)
١	. 1	.	Trip	sek	(0)	77100	~	333 aleton 7.50g/ (2)
		/	7 57	•			<u> </u>	
Ì			You	$\Delta L_{\rm i}$	SBER08	4 1		1656 RBPUTTH 164914 (2)
-	0 .	121	1000	441	2	lak	、 [1750 Denp 1.6 491 (2)
ı	<i>(I)C</i>	1171	lab	bele			~	
-	-				5Blb 45	- 		
]	1	.]	ĺ	•	2 4	.]	- }	WO
	i ł	.			14	• } • •		
					4:10			
		i	İ		7BJR95	1	}	JP.
	1			1	2/3		į	
Ì				<u>r</u>		<u> </u>		
			[w]	96	Chy24	[[]]	امر	(150 pehp 1,200)4(2)
		1	Cal	d ble	`")"	MM	1 ~ }	
	X	<u>'</u>	3/1(y our		' / 		

LABORATORY REPORTED FIELD BLANK DATA IS COMPARED WITH THE SAMPLE DATA IN A TABULATION FORM WITHIN THE SAMPLE ANALYTICAL DATA SUMMARY, TENTATIVELY IDENTIFIED COMPOUNDS IN BLANKS ARE LISTED ON A SEPARATE FORM.

COMMENTS:

e detected		
	<u>e detected</u>	e detected

17744

BLANK ANALYSIS RESULTS FOR TARGET COMPOUNDS

7	BLANK AN	ALYSIS	S RESULT	S FOR TARGET COMPOUNDS
FRACTION	TYPE CONC MATRIX			CONTAMINANTS (CONCENTRATION / DETECTION LIMIT)
BNA	lab blk	SBIKAE	lab	514 ONBP 0.52 43/4 (2)
) ab bcx	Se Mest		1386 Def 0 25 vg/r (2) 1888 BBP 2.1 44/e(2)
	-	SB)k97		1200 per (>25 vg (2) 1430 DNAP (>50 vg (2) 1757 Penp (3 vg (2)
7621	Jou a o lab Lehr	1B)408	lab	ΔΔ
	field	ehy 24		\/ <i>J</i>
	SULID LAB BLK Dil. Faktor = 33	PB1662	Low	Leptacher Ould ug (kg (1) wasdam O.058 ng kg endownton swfate C.52 ng kg mathagener O.36 na ke
				90000 0.18 4 (3) 90000 BYL 0.18 4 (3) 90000 BYL 0.18 4 (3) 90000 BYL 0.18 4 (3) 60000 BYL 0.18 4 (3)
	:/	4	Y	endosultant C. 32 Ugling (3)
	100 6) k	BRIN 78		cheptathin O. CTUGILG (1) mithoxy (bla O. 61 Vg) by (3) photopy (fant O. 09 Vg) kg (3) betop 19th (2) and (54) for the C. 33 Vg (4)
	,,,			
	law solid lah bik = 33	PB)173		Chiptischier - d. Cellygike (i) (Inschier 1260 - 9,2 ugike (i) gamma BH(0.41 ugike (3)
	•••			
	ļ		,	

LABORATORY REPORTED FIELD BLANK DATA IS COMPARED WITH THE SAMPLE DATA IN A TABULATION FORM WITHIN THE SAMPLE ANALYTICAL DATA SUMMARY. TENTATIVELY IDENTIFIED COMPOUNDS IN BLANKS ARE LISTED ON A SEPARATE FORM.

COMMENTS:

(1) RESULT REPORTED BY LABORATORY AND CONFIRMED BY REVIEWER.
(2) RESULT INFERRED FROM QUANTITATION LIST, DIAGNOSTICS, CHROMATOGRAM AND/OR SPECTRA.
ND = none detected *= disagreement w/ amt. on 2 different columns.
(3)= compounds followed by (3) = peak only our column most likely
artifact and one spend on and colyege.
result in highest of two colyways (Not used to question samplex if 3)

QQ133

BLANK ANALYSIS RESULTS FOR TENTATIVELY IDENTIFIED COMPOUNDS

VAILAGE VAA BURTY VAA BURTY VAA BURTY VAA BURTY VAA BURTY VAA BURTY VAA BURTY VAA BURTY VAA GUS 227550 GAP MS GUS 227550 GAP MS GUS 227550 GAP MS GUS 227550 GAP MS GUS 227550 GAP BURTY VAA B	SAMPLE #	FRACTION	SCAN #(S) OR P. T	CONCENTRATION	COMPOUND COMMENTS
BLACK VIA BLACK VIA	VBIKZR			1	N/O
BIRCH (MA) BIRT) (1/A) (1/1 (1640 271580 (1)18 MS (1/1 (1640 171580 (1)18 MS (1/1 (1/1 (1)18 MS (1/1 (1/1 (1)18 MS (1/1 (1/1 (1)18 MS (1/1 (1/1 (1)18 MS (1/1 (1/1 (1)18 MS (1/1 (1/1 (1)18 MS (1/1 (1/1 (1)18 MS (1/1 (1/1 (1)18 MS (1/1 (1/1 (1)18 MS (1/1 (1/1 (1)18 MS (1/1 (1/1 (1)18 MS (1/1 (1)18 MS (1/1 (1)18 MS (1/1 (1/1 (1)18 MS (1/1 (1)					
BIRT 1 (1)	7 7				
			USE	297500 60B	'
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				2 401 500 712	
1532 296500 R13				290 50 (10	
# 1643 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ADDIE A B	VGV			
SERVEY STATE OF STATE				,	
SERVEY BUY 1333 4 12 12 12 12 12 12 12 12 12 12 12 12 12	ا در بادها	1 (1) A	1043	((, ,,	1 Suckary
1990 1990			201	- CO 1 1	
CHILL OA	VIZURITY				
CRIST LOAD SRINGE BLAN 683 3 Jall 41,45 52,87 1999 9905 50772 ALC 1956 552501786 BRINGHIM. 1970 170 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			490.	167072000	
SAIKOR BNA 663 3 JULY 41,45 52 87 1881 1884 1894 1895 1972 ALS BRIGHT. 1880 1804 1851 2 USIN MANNA WAR MAN FOR TA (17) 1880 1804 1851 2 USIN MANNA WAR MAN FOR TA (17) 1880 1804 1804 181 2 USIN MANNA WAR MAN FOR TA (17) 1880 1804 1804 181 2 USIN MANNA WAR MAN FOR TA (17) 1880 1804 1804 181 2 USIN MANNA WAR MAN FOR TA (17) 1880 1804 1804 1805 1805 1805 1805 1805 1805 1805 1805					
1856 525 50786 BAPUHA. 1850 575 50786 BAPUHA. 1850 770 1 1 1 1 1 1 1 1 1	Chy 25	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			<u> </u>
1856 525 50786 BAPUHA. 1850 575 50786 BAPUHA. 1850 770 1 1 1 1 1 1 1 1 1					
1656 576 501786 367444.	381X06	BNA			
SBLR95 BNA 451 2 491 Maria way man (160 70 167 182 3					
SBLR45 BNA USI 2 U9/ Marin way am from 70 167 182 3 1 31) Mary 1877 2 43.71 1870 6 43.61 69.43.97.11 1873 3 1 69.81.92 1915 3 1 69.81.95 1935 7/02 641 1930 5/2 5837 125 7/02 6911 1333 490 501360 SBNA 591 530 1/2 MS 1750 1975 6177 MS 1925 7/02 6911/22 1800 1/2 175 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2					
SBLR45 BNA USI 2 U9/ Marin way am from 70 167 182 3 1 31) Mary 1877 2 43.71 1870 6 43.61 69.43.97.11 1873 3 1 69.81.92 1915 3 1 69.81.95 1935 7/02 641 1930 5/2 5837 125 7/02 6911 1333 490 501360 SBNA 591 530 1/2 MS 1750 1975 6177 MS 1925 7/02 6911/22 1800 1/2 175 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	V	· 4/ 1	750	174011 11	V/ Dehio
1/97 2 43,71 1500 6 43,61,67,53,97,11 1509 5 43,000 1,207 1415 3 43,61,67,53,97,11 1509 5 43,000 1,207 1415 3 43,000 1,207 1415 3 43,000 1,207 1415 3 43,000 1,207 1415 3 43,000 1,205 7/10,500 1225 7/10,500 1225 7/10,500 1225 7/10,500 1225 1255 7/10,500 1225 1255					
1/47 2 43.71 49.43.97, 11/ 1500 6 43.61, 69.43.97, 11/ 1504 5 43.60,101, 20.7 1915 3 43.60,101, 20.7 1915 3 43.60,101, 20.7 1915 7/10.60,1122 1920 5/41, 1920 1920	SBUR951	BNA 1			
1500 43,61,89,53,97,111 1504 5 43,40,101,20 1915 3 43,40,101,20 1915 3 43,40,101,20 1915 3 43,40,101,20 1915 3 43,40,101,20 1915 191	t l			3 1	
1509 5 41 40 101 207 1915 3			1197	2	
1975 3 69,81,95 1970 541 761 641 1930 586 537 125 7/0 03/22 1333 490 1 50/360 1900 590 100 1900 590 100 1900 590 100 1900 100 1900 100 1900 100 100 1900 100			1500		43,61,69,53,97,111
			1509	5	43, 60,101,207
930 59-150 537 1215 77(120)122 1333 49-150/36: SRIEYS BUA			1975	3 1/	69,81,95
125 79001360 1333 490501360 1690 570 11 11 11 11 11 11 11 11 11 11 11 11 11			547	7%16641	
SRVIETS BOLD Chuzy BOLD Chuz			930	5% 150 837	
SRIGHS MA 684 59 50 72 MS (hy24 BNA 684 59 50 72 MS 1750 FRESO 1767 MAD 1864 BNA 592 390 wills 43 59 97 112 FS 65 1969 230 Alleant 73,54,25 J 551 1922 160 11 1958 160 11 1969 213 1960 66 11 1972 130 Calchaced (124) 2018 330 25,57,71,33,97 112,155 547 156 43 MS (236 46 156 147) 612 590 1321 276 150 147 612 590 1321 276 150 147 612 590 1359 390 1724 890 1 1459 300 NO = none telegraph 30 150 1450 590 NO = none telegraph 30 150 1450 590 NO = none telegraph 30 150 150 1450 1557 970 156 155			215	710 21122	
Chy2Y BNA 684 59 I SO 72 MS 1750 17 I SO 17 I MS 1750 17 I SO 17 I MS 1750 17 I SO 17 I MS 1889 BNA 592 390 vally 43 E9 47 112 FS 65 1894 230 Alexan 73,54,29 FS 65 1895 160 11 169 1858 160 11 169 1858 160 11 169 1858 160 11 169 1858 160 11 169 1858 160 11 160 1858 160 11 160 1858 160 11 160 1858 160 11 160 1858 160 11 160 1859 1859 1859 1859 1859 1859 1859 1859	7	J/ 1		4901301368	
Chy2Y BNA 684 59 I SO 72 MS 1750 17 I SO 17 I MS 1750 17 I SO 17 I MS 1750 17 I SO 17 I MS 1889 BNA 592 390 vally 43 E9 47 112 FS 65 1894 230 Alexan 73,54,29 FS 65 1895 160 11 169 1858 160 11 169 1858 160 11 169 1858 160 11 169 1858 160 11 169 1858 160 11 160 1858 160 11 160 1858 160 11 160 1858 160 11 160 1858 160 11 160 1859 1859 1859 1859 1859 1859 1859 1859					
1750 590 100	SRIEUST	BUA			L ND
1750 590 100					
1750 597 50 1767 00 hp SBRAD BNA 592 390 vg/b, 43, 69,47.112 The grad area (73,54, 425.) - 85/ 1172 160 11 1169 1358 160 11 1169 1368 160 11 1169 1372 130 20 1169 1382 130 20 35,57, 71, 33,97,112, 185 547 156 63 MS 1236 490 Exoliby MS 1321 296 Exoliby MS 1321 296 Exoliby MS 1321 296 Exoliby MS 1321 296 Exoliby MS 1321 296 Exoliby MS 1321 296 Exoliby MS 1459 390 1459 390 1459 390 1459 390 1459 390 1459 390 1459 390 1574 390 1575 490 Exoliby	Ch4241	BNAI	684	5%ISO7721	I MS
1750 (9/150 (7k7) MAD 1864 BNA 592 390 vg/b, 43 69.47.112 (55. 469 230 Adxert (73.54, 429.) - 85/ 1172 160 11 169 1358 160 11 169 1368 160 11 169 1375 94 11 160 1386 330 S57, 71, 33.97.112, 185 547 156 63 MS 1236 40 Exoliby MS 130 20/8 330 S57, 71, 33.97.112, 185 547 156 63 MS 1236 40 Exoliby MS 131 29/150 1411 132 390 1459 390 1459 390 1459 390 ND = none telegraph search canducted 1554 470 NLS = no library search canducted 1555 490 Exolibs					MS
390 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	J.			591 SO 1787	∞ ho
	BURGET	BNA			43, 69,97.112 FS: 65.5
1358 160 1417 1419 1		i	969		1. March (73,54,429) - 8-51
1375 99 186 213 1782 130 223 234 24 24 213 236 236 24 24 24 24 25 25 25 25			1221	60	1, 1,69
1375 99 186 213 1782 130 223 234 24 24 213 236 236 24 24 24 24 25 25 25 25			135 8	160	14.7
1782 130 Carley acce (129) 2018 330 2557, 71, 33, 97, 112, 115 547 156 \(\delta 3 \text{ M}\) (236 9\text{ 0 Extiley M}\) (236 9\text{ 0 Extiley M}\) (236 9\text{ 0 Extiley M}\) (236 9\text{ 0 Extiley M}\) (321 27c Extiley M) (321 27c Extiley M) (323 27c Extiley M) (324 37c) (324 87c) (324 37c) (324 37c			1375	99	1865
1782 130 Carles acce (129) 2018 330 5573 71, 33, 975 12, 185 156 163 164 165 169 1					213"
2018 330 557, 71, 33, 97, 112, 115 547 ISO 63 M3 (236 9% EXO169) M5 (299 \$70 1321 276 EXO149) (212 \$70 1321 276 EXO149) (212 \$70 1459 300 (214 870 1459 300 (225 490 ISO 881 1459 300 (225 490 ISO 881 1450 870 (227 490 ISO 881 1450			1782		Carlot aced (129)
547 156 &3 M/3 (236 9% 150 169 M) (609 \$70 1321 276 150 1417 1359 390 1359 390 1459 300 1459			2018		35,57, 71, 83, 97, 112, 115
132 27 50 133 27 50 1417 612 30 1359 300 1724 890 1825 140 158881 1480 890 1480 890 ND = none details 30 150 1149 NLS = no library search conducted. 1655 990 150 1605					MIS 1236 90 EXOLLEY MS
1359 300 1459 300 1459 300 1459 300 1459 300 1459 300 1459 300 1459 300 1459 300 1459 300 1450 800 1514 300 151				K717	1 321 241 TSAILLY 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			612	S cju	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ND = none delega 302 150 Heg 1 1980 870. NLS = no library search conducted 1655 970 150 KLS			672	300	1400 11/2
ND = none delated 302 150 11460 870 PAB FWM. NLS = no library search conducted 1155 990 150 KLS			724		1459 300
ND = none detection 30% isamed 1/ 1574 470 NLS = no library search conducted 1655 990 150 KLS	1		825		1480 800
1740 15%			Tace		1/ 15/21 3/20 1 1 1/13 PASSA.
11 1740 15 %	NO	= NOVE E	6 De Lan		1574 14% J. 1 1
11 1740 15 %	NLS	= no libr	ary sean	ch cenducted	1655 990 ESERGS
	7	- arimaco	u mac		11 740 5 %

17744

41867

BLANK ANALYSIS RESULTS FOR TENTATIVELY IDENTIFIED COMPOUNDS

ALL TENTATIVELY IDENTIFIED COMPOUNDS FOUND IN BLANK ANALYSES ARE LISTED BELOW: SCAN #(S) OR R.T ESTIMATED CONCENTRATION COMPOUND SAMPLE FRACTION COMMENTS NAME COURT SBURGE 1882 RUN 7231 DETOPP ALS 1.65 6. £024 84 IC 2137 SBIKEL I BINA 200 49 44 ろれて <u>; 2I</u> 104 4 756 1400 43 *३(1*0 9.77.112 776 500853 670 2041 724 TITIE? 2538 806 740 8 35 140 Esco 1044 1601 4 11 2 الذ 170 = 50 1328 1294 270 DE.P (35) 349 4901567 9 010 1507 S 1687 حاما7 ا *00* P ርደ የሄ 4 9,550 2041 IL VI 146873 speria 1 IBNA 2.30 43,69,97 742. 43,69,97,112 411 しらて 454 (30) 43.69.97.02 703 1362 170 1664 1780 ISO THEM O 634 500 726 5% 88 3% 490 26 14 qui) IN 911 Īα¬ι 3% 1047 **₽**76 IXV)(154. 200 D46 16 490 1204 740 ISE 13.2 1306 1384 6% ONBP 14 50 4 5% 44 607. IX) 1780 492 1726 7. v 9% DEKP 1881 11474 DXW 0205L GE 102 - 6 70 HONE IS: internal standards

NLS = no library search isoducted

2A
WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02

į	EPA	SMC1	SMC2	SMC3	OTHER	TOT
	SAMPLE NO.	(TOL)#	(BFB)#	(DCE) #		OUT
	2222222222	=====			=====	===
01	CHY02	99	97	101	0	0
02	CHY03	101	97	103	0	0
03	CHY04	98	90	99	0	0
04	CHY05	97	89	101	O	0
05	CHY06	101	93	100	0	0
06	CHY07	100	86	103	0	0
07	CHY08	108	93	103	0	0
80	CHY09	102	109	98	0	0
09	CHY10	104	94	111	0	0
10	CHY24	106	93	110	0	0
11	CHY25	106	92	107	0	0
12	CHY07MS	99	90	114	0	0
13	CHY07MSD	102	89	103	0	0
14	VBLKZB	104	92	102	0	0
15	VBLKAJ	100	88	103	0	0
16	VBLKDC	106	110	99	0	0

QC LIMITS

SMC1 (TOL) = Toluene-d8 (88-110) SMC2 (BFB) = Bromofluorobenzene (86-115) SMC3 (DCE) = 1,2-Dichloroethane-d4 (76-114)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

3A WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02

Matrix Spike - EPA Sample No.: CHY07

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	MS CONCENTRATION (ug/L)	MS % REC #	QC LIMITS REC.
	========	=======================================		=====	#====
1,1-Dichloroethene	50.00	0	56.90	114	61-145
Trichloroethene	50.00	0	44.70	89	71-120
Benzene	50.00	0	47.60	95	76-127
Toluene	50.00	0	46.50	93	76-125
Chlorobenzene	50.00	0	44.80	90	75-130

COMPOUND	SPIKE ADDED (ug/L)	MSD CONCENTRATION (ug/L)	MSD % REC #	% RPD #	QC LI RPD	MITS REC.
====================================	=======		=====	======	======	=====
1,1-Dichloroethene	50.00	63,40	127	11	14	61-145
Trichloroethene	50.00	43.70	87	2	14	71-120
Benzene	50.00	48.70	97	2	11	76-127
Toluene	50.00	45.10	90	3	13	76-125
Chlorobenzene	50.00	44.70	89	1	13	75-130
	l					

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: __0 out of __5 outside limits

Spike Recovery: __0 out of _10 outside limits

COMMENTS: CLP, 17744, CHY02, CHY07, LOW, WATER, 477460, VOA, EPA, F50051

DB624, CS920202A51, BF920202A51, CB920202A51, CN077447A51, CN077448A

^{*} Values outside of QC limits

2B SOIL VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Level: (low/med) LOW

	EPA	SMC1	SMC2	SMC3	OTHER	TOT
	SAMPLE NO.	(TOL) #	(BFB)#	(DCE)#		OUT
	*========	======	======	=====	======	===
01	CHY11	110	103	107	0	0
02	CHY12	106	98	106	0	0
03	CHY13	108	94	110	0	0
04	CHY14	101	96	98	0	0
05	CHY15	112	101	110	0	0
06	CHY16	96	98	104	0	0
07	CHY17	127	111	118	0	0
80	CHY18	110	98	107	0	0
09	CHY19	105	95	103	0	0
10	CHY20	123	104	108	0	0
11	CHY21	119	99	104	0	0
12	CHY22	109	101	103	0	0
13	CHY23	93	90	96	0	0
14	CHY26	86	80	85	0	0
15	CHY18MS	109	98	105	0	0
16	CHY18MSD	108	97	107	0	0
17	VBLKT7	104	97	100	0	0
18	VBLKV8	93	89	89	0	0
19	VBLKW9	93	89	98	0	0
20	VBLKA4	101	96	98	0	0
		l				

QC LIMITS

SMC1 (TOL) = Toluene-d8 (84-138)

SMC2 (BFB) = Bromofluorobenzene (59-113)

SMC3 (DCE) = 1,2-Dichloroethane-d4 (70-121)

- # Column to be used to flag recovery values
- * Values outside of contract required QC limits
- D System Monitoring Compound diluted out

3B SOIL VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix Spike - EPA Sample No.: CHY18 Level: (low/med) LOW

	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	*	LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	REC.
#==========	=======	######################################	=========	=====	=####
1,1-Dichloroethene	69.40	0	68.19	98	59-172
Trichloroethene	69.40	0	63.33	91	62-137
Benzene	69.40	0	74.45	107	66-142
Toluene	69.40	0	69.03	99	59-139
Chlorobenzene	69.40	0	66.11	95	60-133

COMPOUND	SPIKE ADDED (ug/Kg)	MSD CONCENTRATION (ug/Kg)	MSD % REC #	% RPD #	QC LI RPD	IMITS REC.
	======		# ##	=====	=====	=====
1,1-Dichloroethene	69.40	72.78	105	7	22	59-172
Trichloroethene	69.40	64.86	93	2	24	62-137
Benzene	69.40	76.11	110	3	21	66-142
Toluene	69.40	72.50	104	5	21	59-139
Chlorobenzene	69.40	69.17	100	5	21	60-133
		<u> </u>		l <u>—</u> ——.		l

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: __0 out of __5 outside limits

Spike Recovery: __0 out of _10 outside limits

COMMENTS: CLP

CAP, GT920131C18, BG920131C18, , , ,

3/90 029A 3/90 029A

2D SOIL SEMIVOLATILE SURROGATE RECOVERY

Lab Name: COMPUCHEM, RTP Contract: <u>68D10083</u>

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Level: (low/med) LOW

	EPA	Sl	S2	S3	S4	S5	S6	S7	S8	TOT
	SAMPLE NO.	(NBZ)#	(FBP)#	(TPH)#	(PHL)#	(2FP)#	(TBP)#	(2CP)#	(DCB)#	OUT
	=======================================	======	======	=====	======	=====	=====	======	======	===
01	CHY11	88	83	67	70	72	45	57	78	0
02	CHY12	58	51	76	47	42	33	35	48	0
03	CHY13	62	63	70	50	50	36	40	60	0
04	CHY14	75	64	79	66	69	39	54	60	0
05	CHY15	0 D	0 D	87	0 D	0 D	64 26		0 D	0
06	CHY16	58	58	76	38	(19 *)	26	(24)	34	1
07	CHY17	76	68	79	60	47	/13 *	40	63	1
08	CHY18	79	64 V	79 ✓	59 🗸	48	(18 *	42	63	1
09	CHY18DL	84	75 ✓	91 🗸	69 🗸	68 🗸	46	55	68	0
10	CHY19	77	71	66	64	51	(21	43	64	0
11	CHY20	45	59	63	45	66	(27)	45	55	0
12	CHY20DL	71	65	87	45	56	46	41	0 D	0
13	CHY21	42	44	40	42	46	40	34	41	0
14	CHY22	80	71	72	50	(28)	2 *	$(27)_{1}$	64	1
15	CHY22RE	58	71	81	55	35 1	8 *	32	53	1
16	CHY23	47	45	49	37	39	34	31	43	0
17	CHY26	72	65	70	68	62	55	50	62	0
18	CHY18MS	71	60	72	51	40	12	35	60	1
19	CHY18MSD	79	69	82	66	63	53	49	69	0
20	SBLK96	61	52	88	47	44	37	35	52	0
21	SBLK86	38	39	44	41	41	23	30	40	0
22	SBLK97	51	49	58	48	45	42	37	47	0
										i

```
QC LIMITS
S1 (NBZ) = Nitrobenzene-d5
                                     (23-120)
S2 (FBP) = 2-Fluorobiphenyl
                                     (30-115)
S3 (TPH) = Terphenyl-d14
                                     ( 18-137)
S4 (PHL) = Phenol-d5
S5 (2FP) = 2-Fluorophenol
                                     (24-113)
                                     ( 25-121)
S6 (TBP) = 2,4,6-Tribromophenol
                                     (19-122)
S7 (2CP) = 2-Chlorophenol-d4
                                     (20-130)
                                                 (advisory)
S8 (DCB) = 1,2-Dichlorobenzene-d4
                                    (20-130)
                                                (advisory)
```

- # Column to be used to flag recovery values
 * Values outside of contract required QC limits
- D Surrogate diluted out

&10061f6D

SOIL SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: COMPUCHEM, RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO

SDG No.: CHY11

Matrix Spike - EPA Sample No.: CHY18

____ Level:(low/med) LOW

COMPOUND	SPIKE ADDED (ug/Kg)	SAMPLE CONCENTRATION (ug/Kg)	MS CONCENTRATION (ug/Kg)	MS % REC #	QC LIMITS REC.
COMPOUND	(49/149)	(49/149)	(49/149)	KEC #	
Phenol	3430	0	1928	56	26- 90
2-Chlorophenol	3430	0	1704	50	25-102
1,4-Dichlorobenzene	2280	0	1366	60	28-104
N-Nitroso-di-n-prop.(1)	2280	0	1467	64	41-126
1,2,4-Trichlorobenzene_	2280	0	1435	63	38-107
4-Chloro-3-methylphenol	3430	0	1869	54	26-103
Acenaphthene	2280	88.65	1499	62	31-137
4-Nitrophenol	3430	0	2367	69	11-114
2,4-Dinitrotoluene	2280	0	1307	57	28- 89
Pentachlorophenol	3430	0	78.14	(2 *	17-109
Pyrene	2280	2691	3263	25 *	35-142

TBP SUN. Low 7

	SPIKE ADDED	MSD CONCENTRATION	MSD %	%	OC LIMITS	
COMPOUND	(ug/Kg)	(ug/Kg)	REC #	RPD #	RPD	REC.
=======================================	========	==========	=====	=====	======	
Phenol	3430	2276	66	16	35	26- 90
2-Chlorophenol	3430	2166	63	23	50	25-102
1,4-Dichlorobenzene	2280	1426	63	5	27	28-104
N-Nitroso-di-n-prop.(1)	2280	1604	70	9	38	41-126
1,2,4-Trichlorobenzene	2280	1471	65	3	23	38-107
4-Chloro-3-methylphenol	3430	2490	73	30	33	26-103
Acenaphthene	2280	1650	68	9	19	31-137
4-Nitrophenol	3430	2495	73	6	50	11-114
2,4-Dinitrotoluene	2280	1353	59	3	47	28- 89
Pentachlorophenol	3430	302.0	9 *	⊃127 *	47	17 - 109
Pyrene	2280	3564	38 🗸	41 *	36	35-142
		[1818 SUW			

⁽¹⁾ N-Nitroso-di-n-propylamine

low pyrene recov possible to spl

Column to be used to flag recovery and RPD values with an asterisk

RPD: 2 cut of 11 outside limits

Spike Recovery: __3 out of _22 outside limits

COMMENTS:

CAP, HH920210C21, DH920210C21, , ,

. FORM III SV-2

3/90

^{*} Values outside of QC limits

2C WATER SEMIVOLATILE SURROGATE RECOVERY

____ Contract: <u>68D10083</u> Lab Name: COMPUCHEM.RTP

Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02 Lab Code: COMPU

	EPA	s ₁	S2	S3	S4	S 5	S6	S 7	S8	TOT
	SAMPLE NO.	(NBZ)#	(FBP)#	(TPH)#	(PHL)#	(2FP)#	(TBP)#	(2CP)#	(DCB)#	OUT
	=======================================	=====	=====	=====	=====	======	=====		=====	===
01	CHY02	102	98	103	96	98	92	75	92	0
02	CHY03	87	81	103	79	83	77	61	81	0
03	CHY04	79	72	92	70	73	63	56	76	0
04	CHY05	90	82	109	79	78	75	63	86	0
05	CHY06	71	63	79	60	57	63	47	64	0
06	CHY07	83	71	94	75	79	74	60	78	0
07	CHY08	83	71	85	72	77	79	57	75	0
08	CHY09	84	73	70	72	79	72	57	84	0
09	CHY10	83	73	89	70	70	64	56	77	0
10	CHY24	65	65	93	73	70	53	55	64	0
11	CHY07MS	83	75	104	78	77	84	56	71	0
12	CHY07MSD	82	73	93	70	75	79	54	71	0
13	SBLK95	76	68	94	71	73	31 /	55	71	0
14	SBLK08	56	57	77	64	62	45	49	55	0
15	SBLK95	102	93	123	103	104	72	77	92	0
								ĺ		

				V	C LIMITS		
Sl	(NBZ)	=	Nitrobenzene-d5	(35-114)	\sim	
S2	(FBP)	=	2-Fluorobiphenyl	(43-116)	J 1C	
S3	(TPH)	=	Terphenyl-d14	(33-141)		
S 4	(PHL)	=	Phenol-d5	(10-110)		
S5	(2FP)	=	2-Fluorophenol	(21-110)		
S6	(TBP)	=	2,4,6-Tribromophenol	(10-123)		
S7	(2CP)	=	2-Chlorophenol-d4	(33-110)	(advisory)	
S8	(DCB)	=	1,2-Dichlorobenzene-d4	(16-110)	(advisory)	

[#] Column to be used to flag recovery values
* Values outside of contract required QC limits

D Surrogate diluted out

3 C

WATER SEMIVOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: COMPUCHEM, RTP ____ Contract: <u>68D10083</u>

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02

Matrix Spike - EPA Sample No.: CHY07

COMPOUND	SPIKE	SAMPLE	MS	MS	QC
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitroso-di-n-prop.(1) 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol Pyrene	75.00 75.00 50.00 50.00 50.00 75.00 50.00 75.00 50.00 75.00	0 0 0 0 0 0 0 0 0 0 1.320 0	66.20 64.50 38.30 46.50 41.00 71.40 43.00 92.10 53.00 39.00 54.30	88 86 77 93 82 95 86 121 * 106 *	12-110 27-123 36- 97 41-116 39- 98 23- 97 46-118 10- 80 24- 96 9-103 26-127

(ug/L) =======	(ug/L)	REC #	RPD #		
======			11111111111	RPD	REC.
1		=====	======	======	======
75.00	62.70	84	5	42	12-110
75.00	62.40	83	4	40	27~123
50.00	35.60	71	8	28	36~ 97
50.00	46.60	93	0	38	41~116
50.00	39.60	79	4	28	39~ 98
75.00	65,90	88	8	42	23~ 97
50.00	40.50	81	6	31	46-118
75.00	87.10	114 *	6	50	10~ 80
50.00	48.70	97 *	9	38	24- 96
75.00	64.70	86	49	50	9~103
50.00	48,20	96	13	31	26-127
	75.00 50.00 50.00 50.00 75.00 50.00 75.00	75.00 62.40 50.00 35.60 50.00 46.60 50.00 39.60 75.00 65.90 50.00 40.50 75.00 87.10 50.00 48.70 75.00 64.70	75.00 62.40 83 50.00 35.60 71 50.00 46.60 93 50.00 39.60 79 75.00 65.90 88 50.00 40.50 81 75.00 87.10 114 * 50.00 48.70 97 * 75.00 64.70 86	75.00 62.40 83 4 50.00 35.60 71 8 50.00 46.60 93 0 50.00 39.60 79 4 75.00 65.90 88 8 50.00 40.50 81 6 75.00 87.10 114 * 6 50.00 48.70 97 * 9 75.00 64.70 86 49	75.00 62.40 83 4 40 50.00 35.60 71 8 28 50.00 46.60 93 0 38 50.00 39.60 79 4 28 75.00 65.90 88 8 42 50.00 40.50 81 6 31 75.00 87.10 114 6 50 50.00 48.70 97 9 38 75.00 64.70 86 49 50

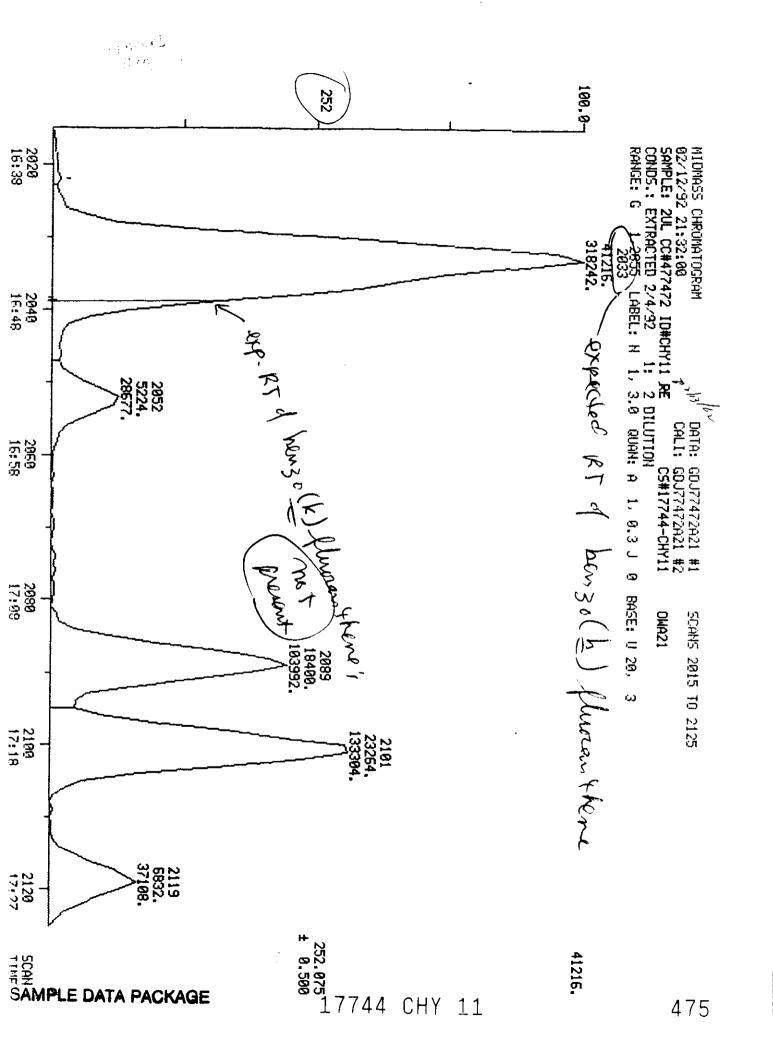
(1) N-Nitroso-di-n-propylamine

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

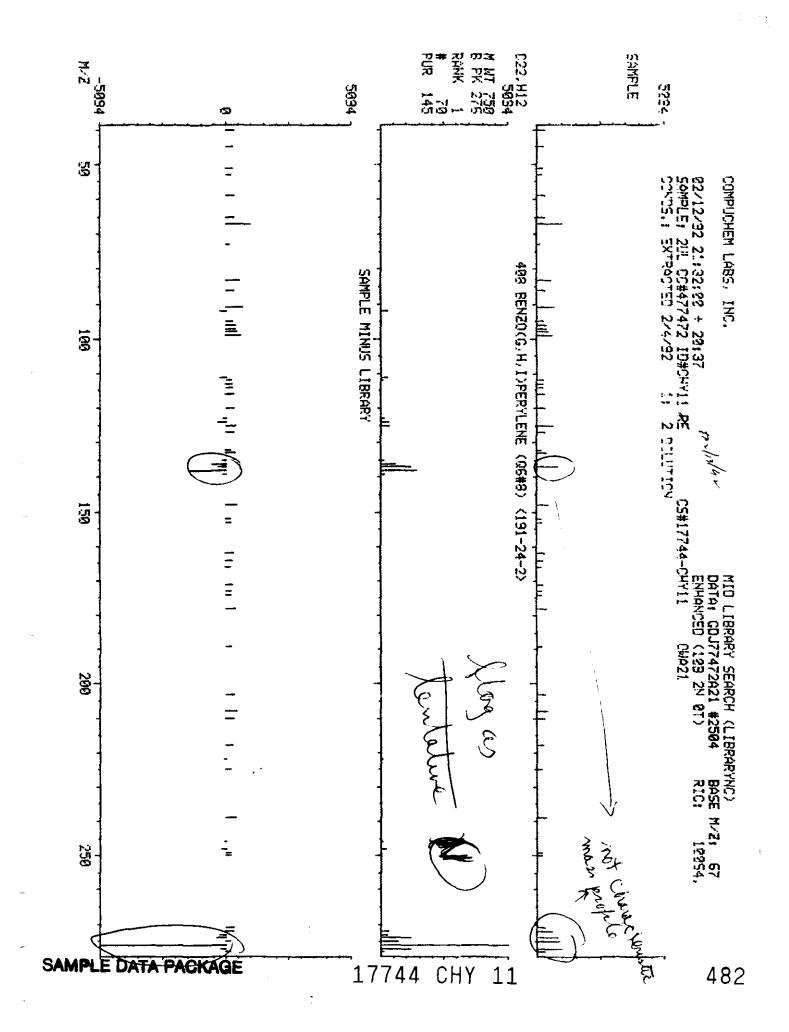
RPD: 0 out of 11 outside limits

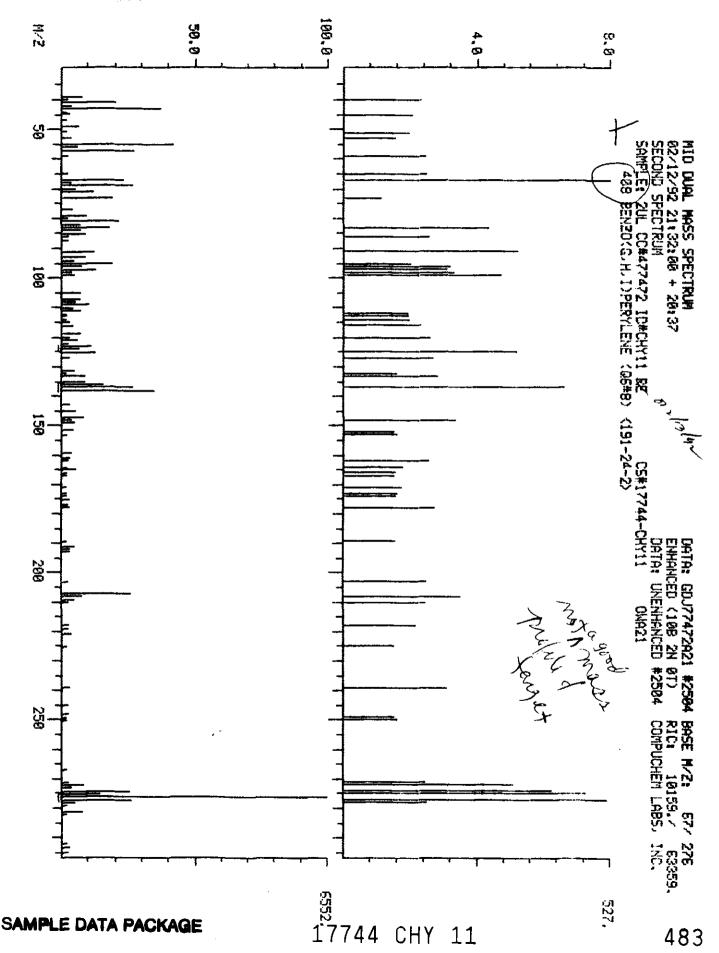
Spike Recovery: 4 out of 22 outside limits

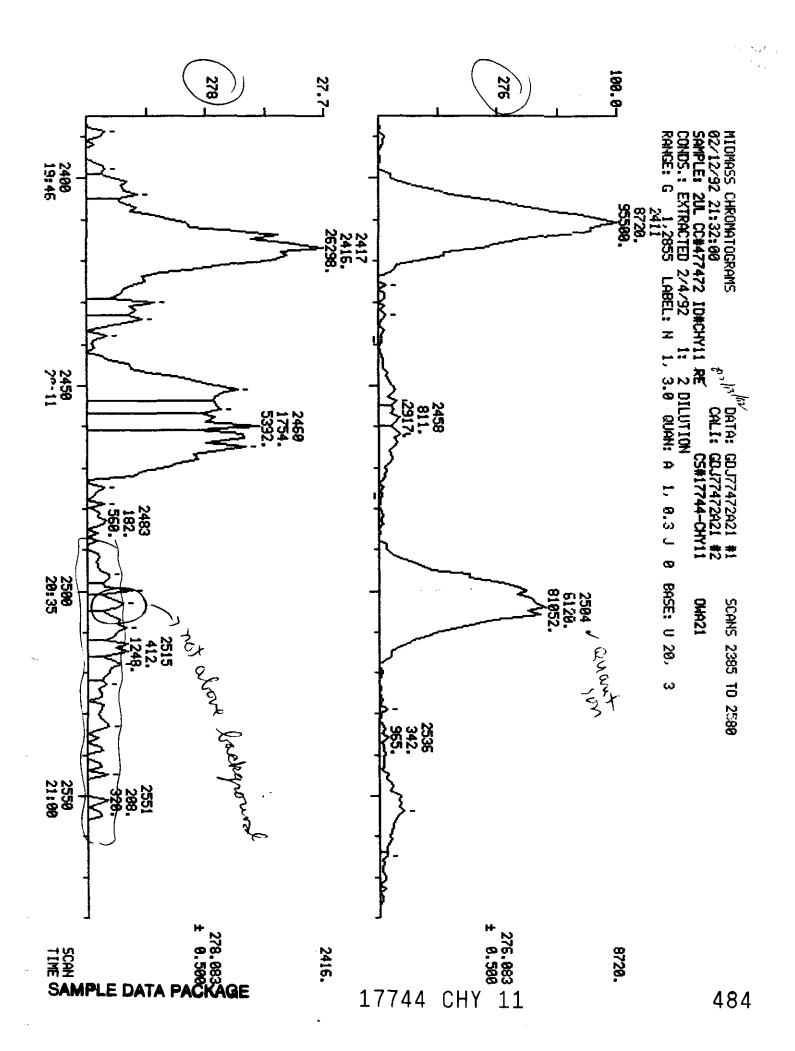

COMMENTS:

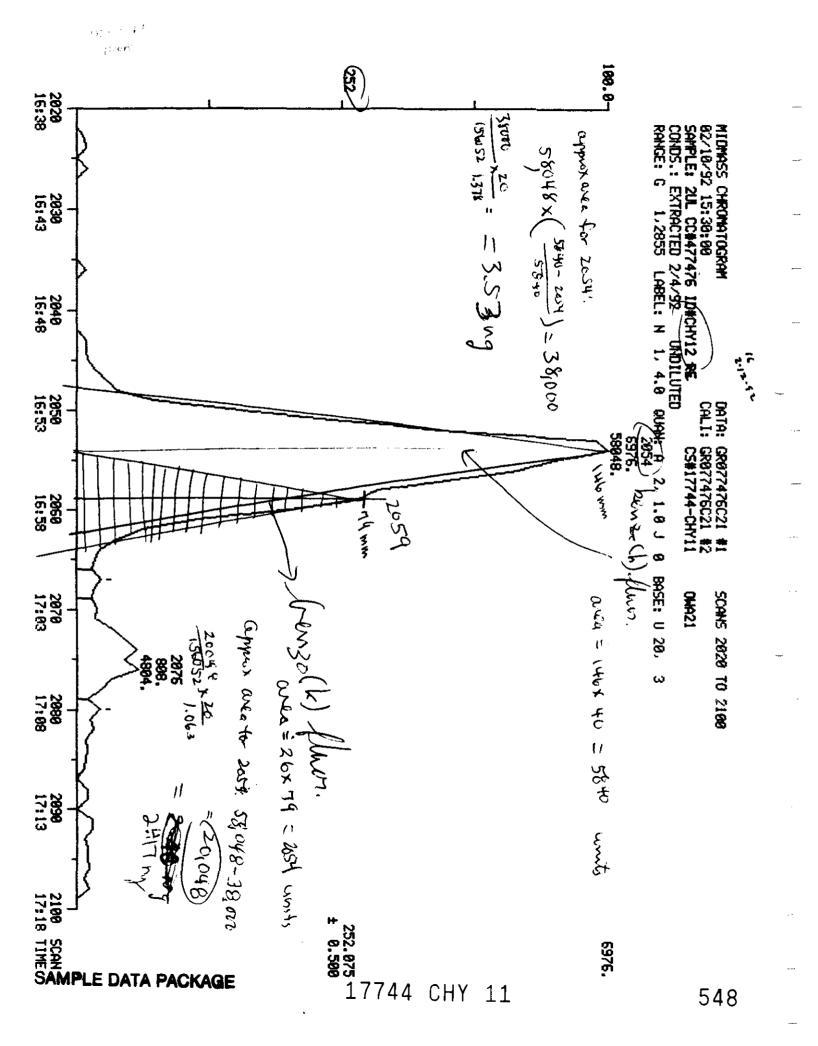
CAP, HG920203B52, DH920203B52, , ,

. FORM III SV-1


ÜΊL


Sample Data Package 17744 CHYO2




```
51
     444 PHENANTHRENE (Q4#7) CB5-01-8>
52
      583 CARBAZOLE
53
     403 ANTHRACENE (Q4#8) <120-12-7>
54
     426 DI-N-BUTYL PHTHALATE (Q4#9) <84-74-2>
55
     431 FLUDRANTHENE (Q4#10) <206-44-0>
     *459 D12-CHRYSENE (IS#5)
56
57
     445 PYRENE (05#3) <129-00-0>
     415 BUTYLBENZYL PHTHALATE (Q5#4) <85-68-7>
58
     423 3.3'-DICHLOROBENZIDINE (Q5#5) <91-94-1>
59
     405 BENZO(A)ANTHRACENE (Q5#6) <56-55-3>
60
     413 BIS(2-ETHYLHEXYL) PHTHALATE (Q5#7) <117-81-7>
61
62
     418 CHRYSENE (Q5#8) <218-01-9>
63
     *497 D12-PERYLENE (IS#6)
     429 DI-N-OCTYL PHTHALATE (Q6#2) <117-84-0>
64
65
     407 BENZO(B)FLUORANTHENE (Q6#3) <205-99-2>
     409 BENZO(K)FLUORANTHENE (G6#4) <207-08-9>
66
67
     406 BENZO(A)PYRENE (G6#5) <50-32-8>
     437 INDENO(1,2,3-C,D)PYRENE (Q6#6) <193-39-5>
68
                                                                 Routewa identificated popularity
     419 DIBENZO(A, H) ANTHRACENE (Q6#7) <53-70-3>
69
70
     408 BENZO(G, H, I)PERYLENE (Q6#8) <191-24-2>
71
     #619 2-FLUOROPHENOL (SS#1)
    #612 D5-PHENOL (SS#2)
     #634 2-CHLOROPHENOL-D4 (SS#3)
14
     #570 1,2-DICHLOROBENZENE-D4 (SS#4)
75
    #447 D5-NITROBENZENE (SS#5)
    #448 2-FLUOROBIPHENYL (SS#6)
76
     #628 2,4,6-TRIBROMOPHENOL (SS#7)
78
    #496 D14-TERPHENYL (SS#8)
No
    m/z
          Scan
                  Time
                         Ref
                                RRT
                                     Meth
                                              Area(Hght)
                                                            Amount
                                                                            %Tot
                                     A BV
     178
          1403
                 11:33
                         45
51
                              1.003
                                               318796.
                                                            26. 529 NG
                                                                            4. 33 /
                 11:52
                                     A BB
52
     167
          1440
                         45
                              1.029
                                                22824.
                                                             2. 666 NG
                                                                            0.44
53
     178
          1411
                 11:37
                         45
                              1.009
                                     A VV
                                                62644.
                                                             5. 992 NG
                                                                            0. 98/y
54
    NOT FOUND
55
     202
          1403
                13:12
                         45
                              1.146
                                     A BV
                                               532992.
                                                                            9. 93 Y
                                                            60.866 NG
     240
         (1846
                 15:12
                         56
                             1,000
                                     A VB
                                               157164.
                                                            20,000 NG
56
                                                                            3.26/
                                              477385.
57
     202
          1641
                 13:31
                         56
                             0.889
                                     A BB
                                                            30.897 NG
                                                                            5. 04 y
                             0.949
58
     149
          1751
                 14:25
                         56
                                     A BB
                                               11723.
                                                             1, 428 NG
                                                                            0. 23'<sub>1</sub>/
59
    NOT FOUND
          1845
                         56
                             0.999
                                     A BV
                                                            25. 381 NG
                                                                            4. 14 V
                 15: 12
                                              229611.
                                     A BB
     149
          1850
                 15:14
                         56
                             1,002
                                                                            Q. 49/V
                                               37186.
                                                             2. 979 NG
٥.
          1851
                 15:15
                         56
                                     A VV
52
    228
                              1.003
                                               173006.
                                                            19. 377 NG
                                                                            3.16 V
    264 2113
NOT FOUND
                                     A BB
śЗ
                17:24
                                               129628.
                         63
                              1.000
                                                            20.000 NG
                                                                            3.26
64
                                     A BU 1/82 322113.
     252 /2033
                ) 16: 45
                         63
                              0.962
                                                      W2-714_
Puantitation Report
                         File: GDJ77472A21
          Bean
                   Time
                         Ref
                                RRT
No
     m/z
                                      Meth
                                               Area(Hght)
                                                            Amount.
                                                                             4Tot
                                     A BV 3/ 19 22/13: 40.34 39. 375 NG
 35
                 16:45
                         63\
                              0/962
                                                                             6:42
     2<del>32</del>
          (2033)
                                                                             3. 55∜
                                      A VV13390/144998. 20.07 21.763 NG
 57
     252
           2101
                  17: 18
                         63
                              Ó. 994
                                      A BB 95500 105072. /3 07714. 414 NG
                              1.141
     276
          2411
                 19:51
                         63
                                                                             2.35
68
 59
     NOT FOUND 247
                                                26298
                                                             4.439
                                                        12.505 13. 337 NG
                                                                            /2. 18 X
                                      A BB 8105286434.
 70
     276
           2504
                 20:37
                         63
                              1.185
                                      A BB
                                                            27, 140 NG
                                                                            4.43
71
     112
            486
                   4:00
                          1
                              0.728
                                               157976.
                                      A BV
      99
                   5:05
                              0. 925
                                               192244.
                                                                             4.30
72
            618
                                                            26. 368 NG
                           1
 Έ.
                   5:14
                                      A BB
                                               145932.
                                                                            3.49
     132
            636
                              0. 952
                           1
                                                            21.386 NG
 '4
                                                                             3.20
     152
            691
                   5:41
                           1
                              1.034
                                      A BB
                                                88820.
                                                             19.615 NG
 75
                                      A BV
                                                                            3, 59
      82
            753
                   6:12
                         13
                              0.871
                                               161808.
                                                            22. 017 NG
                              0.904
                                      A BV
                                                                             3.40
 76
     172
           1041
                  8:34
                         26
                                               231208.
                                                            20.846 NG
                                      V DD
                 10:33
                         26
                              1 111
     330
           1282
```

```
431 FLUDRANTHENE (94#10) <206-44-0>
55
     *459 D12-6997YSENE (IS#5)
56
     445 PYRENE (Q5#3) <129-00-0>
57
     415 BUTYLBENZYL PHTHALATE (Q5#4) <85-68-7>
58
     423 3,3'-DICHLOROBENZIDINE (Q5#5) <91-94-1>
59
60
     405 BENZO(A)ANTHRACENE (Q5#6) <56-55-3>
     413 BIS(2-ETHYLHEXYL) PHTHALATE (G5#7) C117-B1-7>
61
     418 CHRYSENE (Q5#8) <218-01-9>
62
63
     *497 D12-PERYLENE (IS#6)
     429 DI-N-DCTYL PHTHALATE (Q6#2) <117-84-0>
64
     407 BENZO(B)FLUORANTHENE (G6#3) <205-99-2>
65
     409 BENZD(K)FLUDRANTHENE (96#4) <207-08-9>
66
     406 BENZO(A)PYRENE (G6#5) <50-32-8>
67
                                                             2/12
    437 INDENO(1, 2, 3-C, D)PYRENE (G6#6) <193-39-5>
68
     419 DIBENZO(A, H) ANTHRACENE (G6#7) <53-70-3>
69
    408 BENZO(G, H, I)PERYLENE (G6#8) <191-24-2>
70
71
     #619 2-FLUOROPHENOL (SS#1)
    #612 D5-PHENOL (SS#2)
72
    #634 2-CHLOROPHENOL-D4 (SS#3)
73
74
     #570 1,2-DICHLOROBENZENE-D4 (SS#4)
75
    #447 D5-NITROBENZENE (SS#5)
76
     #448 2-FLUOROBIPHENYL (SS#6)
     #628 2,4,6-TRIBROMOPHENOL (SS#7)
77
     #496 D14-TERPHENYL (S5#8)
                              RRT
                        Ref
                                    Meth
                                            Area(Hght)
Nσ
    m/z
          Scan
                Time
                                                         Amount
                                                                         %Tot
          Scan | Time | 1407 | 11:35
                        45
                            1.003
                                    A BV
                                            402592.
                                                                         1.30
51
     178
                                                         25.000 NG
                11:53
                        45
                            1.029
                                    A BV
                                            284820.
                                                         25.000 NG
52
     167
         1443
                                                                         1.30
         1415/ 11:39
                                    A VB
                        45
                            1.009
                                            350268.
                                                         25, 000 NG
53
     178
                                                                         1.30
                                    A BV
                12:22
                        45
                                             551675.
54
     149 (1502
                            1.071
                                                         25, 000 NG
                                                                         1.30
          1606 13:14
                        45
                                   A BV
55
     202
                            1.145
                                            293372.
                                                          25, 000 NG
                                                                         1.30
    240 1849 15: 14
202 1644 13: 32
                                   A BB
56
                        56
                            1.000
                                            121620.
                                                         20,000 NG
                                                                         1.04 ك
                            O. 889 A BB
57
                        56
                                            278912.
                                                         25. 000 NG
                                                                         1.30
     149 / 1754
               14:27
                        56
                           0. 749 A BV
                                            158868.
                                                         25, 000 NG
                                                                         1.30
     252 1843 15:11
59
                        56 0.997
                                    A BB
                                             23160.
                                                         25. 000 NG
                                                                         1.30
60
     228 1848 / 15:13
                        56
                           0.999 A BV
                                            175017.
                                                         25, 000 NG
                                                                         1.30
    149 / 1853 15:16
228 1854 / 15:16
                        56
                            1,002
                                   A BB
                                            241512.
                                                                         1.30
                                                         25, 000 NG
61
                        56
                            1,003 A VB
                                            172728.
                                                         25, 000 NG
62
                                                                         1.30
63
     264 2114 17:25
                        63
                            1.000 A BB
                                             83140.
                                                         20, 000 NG
                                                                         1.04
                                    A BV
64
     14<u>9 \ 1963 | 16:10</u>
                        63
                            0. 929
                                            318104.
                                                         25, 000 NG
                                                                         1.30
                                                                         1.30 h(b)f
        2034 ,16: 45
                        63
                                    A BV
                                             119496.
                            0.962
                                                         25. 000 NG
SAMPLE DATA PACKAGE
                                   17744 CHY 11
                                                                           1759
uvantitation Report
                        File: HG920212B21
Nο
     MIT SCAN
                        Ref
                  Time
                               RRT
                                    Meth
                                             Area(Hght)
                                                          Amount
                                                                         %Tot
    ~252
          2039 216: 47
                        63
                                                                         1.30 b(k)f
                            0. 965
                                    A VB
                                             131170.
                                                          25.000 NG
67
     252
          2102/ 17:19
                        63
                            0. 994
                                    A BV
                                             106828.
                                                         25.000 NG
                                                                         1.30
68
          2411/ 19:51
     276
                        63
                            1.140
                                    A BB
                                             116884.
                                                         25, 000 NG
                                                                         1.30
69
          2419/ 19:55
     278
                        63
                            1, 144
                                    A BB
                                             95000.
                                                         25.000 NG
                                                                         1.30
70
          2500/ 20:35
     276
                        63
                            1.183
                                    A BB
                                             103912.
                                                         25.000 NG
                                                                         1.30
71
     112
           487
                  4:01
                         1
                            0. 725
                                    A BB
                                            157576.
                                                         25.000 NG
                                                                         1.30
72
     99
           621
                  5:07
                         1
                            0. 924
                                    A BV
                                             197372.
                                                         25.000 NG
                                                                         1.30
           639
73
     132
                 5:16
                         1
                            0.951
                                    A BV
                                             184728.
                                                         25.000 NG
                                                                         1.30
74
     152
           695/
                 5:43
                         1
                            1.034
                                    A BB
                                            122584.
                                                         25. QQQ NG
                                                                        1.30
75
     82
           757
                 6:14
                        13
                            0.871
                                    A BB
                                            228712.
                                                         25.000 NG
                                                                        1,30
75
     172
          1045
                 8:36
                        26
                            0.905
                                    A BB
                                            326200.
                                                         25.000 NG
                                                                        1.30
77
    330
          1286
                10:35
                        26
                            1.113
                                    A BB
                                             56208.
                                                         25.000 NG
                                                                        1.30
78
    244
          1671
                            0. 904
                13:46
                        56
                                    A BB
                                            196454.
                                                         25. 000 NG
                                                                        1.30
No
    Ret(L) Ratio RRT(L) Ratio
                                    Amm+
                                            4mm+11 1
```



```
DES CARBAZOLE
22
53
    403 ANTHRACENE (Q4#8) <120-12-7>
54
    426 DI-N-BUTYL PHTHALATE (G4#9) <84-74-2>
55
    431 FLUORANTHENE (Q4#10) <206-44-0>
    *459 D12-CHRYSENE (IS#5)
56
    445 PYRENE (05#3) <129-00-0>
57
58
    415 BUTYLBENZYL PHTHALATE (Q5#4) (85-68-7)
    423 3,3'-DICHLORDBENZIDINE (05#5) <91-94-1>
59
    405 BENZO(A)ANTHRACENE (Q5#6) <56-55-3>
60
    413 BIS(2-ETHYLHEXYL) PHTHALATE (Q5#7) <117-81-7>
61
    418 CHRYSENE (Q5#8) <218-01-9>
62
63
    *497 D12-PERYLENE (IS#6)
64
    429 DI-N-OCTYL PHTHALATE (G6#2) <117-84-0>
65
    407 BENZO(B)FLUORANTHENE (Q6#3) <205-99-2>
    409 BENZO(K)FLUDRANTHENE (Q6#4) <207-08-9>
66
    404 BENZO(A)PYRENE (G6#5) <50-32-8>
67
68
    437 INDENO(1,2,3-C,D)PYRENE (Q6#6) <193-39-5>
69
    419 DIBENZO(A,H)ANTHRACENE (Q6#7) <53-70-3>
70
    408 BENZO(G, H, I) PERYLENE (G6#8) <191-24-2>
71
    #619 2-FLUOROPHENOL (SS#1)
    #612 D5-PHENOL (SS#2)
72
    #634 2-CHLOROPHENOL-D4 (SS#3)
73
74
    #570 1,2-DICHLOROBENZENE-D4 (SS#4)
75
    #447 D5-NITROBENZENE (SS#5)
76
    #448 2-FLUOROBIPHENYL (SS#6)
77
    #628 2,4,6-TRIBROMOPHENOL (SS#7)
78
    #496 D14-TERPHENYL (SS#8)
No
    m/z
          Scan
                  Time
                        Ref
                               RRT
                                     Meth
                                              Area (Hght)
                                                           Amount
                                                                           %Tot
51
    178
          1420
                 11:42
                        45
                             1.003
                                     A BV
                                                                           0. 50465
                                               38952.
                                                            2. 013 NC
52
    NOT FOUND
    NOT FOUND
53
54
    149
          1515
                 12:29
                        45
                             1.070
                                     A BB
                                               21156.
                                                                           0. 27 465
                                                            1.079 NG
55
    202
          1620
                13:20
                        45
                             1.144
                                     A BV
                                                                           1.23 45
                                               75756.
                                                            4. 987 NG
    240
         (864) 15:21
                        56
                             1.000
56
                                     A BB
                                              247296.
                                                                           4. 92
                                                           20,000 NC
                                                                           1.08465
57
    202
          1659
                 13:40
                        56
                             0.890
                                     A BB
                                               71364.
                                                            4. 397 NG
58
    149
          1768
                14:34
                        56
                             0.948
                                     A BB
                                                6620.
                                                            1.037 NC
                                                                           0. 26 485
    NOT FOUND
59
                                     A#BV $20 71176: 2.912 5-724 NO
    228/411868
                 15:23
                        56
60
                             1.002
                                                                           1. 41 405
    149
          1866
                 15:22
                        56
                             1.001
                                     A BB
61
                                               49501.
                                                                           1. 1948
                                                            4.829 NG
                                     A VV 33031 94992. 2.866
62
    228
          1868
                 15:23
                        56
                             1.002
                                                            2. 970 NO
                                                                           0. 73 765
63
    264 (2138) 17:36
                        63
                             1.000
                                     A BV
                                              156052.
                                                           20. 000
                                                                           4. 92
                                                                   NG
                                                                                   156
    NOT FOUND
64
                                            35,000
                                     A BV 1148 57470. 61099
65 € 252
                             0. 961
        2054
                 16: 55
                        63
SAMPLE DATA PACKAGE
                                      17744
                                                                        -170 UNE-12-5
          2059
Scan
                                           ZO,090 (Hght)
No m/z
                  Time
                        Ref
                               RRT
                                                           Amount
                                                                           %Tot
                                                                           1.7015
                                     A BU 58045-87478; .6,898
66Œ 252
         2054
                 16: 55
                        63
                             0.961
                                                           127
                             0. 994
                                                            2. 499 NG
                                                                           0.6145
                 17:30
67
    252
          2125
                        63
                                     A VB
                                               20160.
68
    276
          2443
                 20:07
                        63
                             1.143
                                     A#BB
                                               11004.
                                                            1, 214 NG
                                                                           0. 30 485
69
    NOT FOUND
                                                                           0. 29 4es
70
    276
          2540
                 20:55
                        63
                             1.188
                                     A BB
                                                9116.
                                                            1.190 NG
           501
                  4:08
                          1
                             0.734
                                     A BV
                                              221764.
                                                           31.843 NG
                                                                           7.83
71
    112
72
     99
           632
                  5:12
                          1
                             0. 925
                                     A BV
                                              291655.
                                                           35, 430 NG
                                                                           8. 72
           651
                  5: 22
                             0. 953
                                     A BB
                                              212764.
                                                                           6. 50
73
    132
                          1
                                                           26. 408 NG
                                                                           5. 93
74
    152
           706
                  5:49
                          1
                             1.034
                                     A BB
                                              134212.
                                                           24.090 NG
                        13
                                     A BV
75
     82
                  6:19
                             0.873
                                              233100.
                                                           29. 205 NG
                                                                           7.19
           768
                  8:42
                        26
                             0.905
                                     A BB
    172
                                              428016.
                                                                           6.32
          1057
                                                           25. 675 NG
76
                        26
                                     A BB
                                               72364.
77
    330
          1299
                 10:42
                             1.112
                                                           24. 454 NG
                                                                           6.02
                 13:53
                         56
                             0.904
                                     A BB
                                              423108.
78
    244
          1685
                                                           38, 075 NG
                                                                           9.37
                                                         R. Fac R Fac(I_) Patin
    Ret(L) Ratio RRT(L) Ratio
                                      Amnt
                                              Amnt(L)
```

No

```
383 CARBAZOLE
\supset =
53
    403 ANTHRACENE (Q4#8) <120-12-7>
54
    426 DI-N-BUTYL PHTHALATE (G4#9) <84-74-2>
55
    431 FLUORANTHENE (Q4#10) <206-44-0>
    *459 D12-CHRYSENE (IS#5)
56
57
    445 PYRENE (05#3) <129-00-0>
58
    415 BUTYLBENZYL PHTHALATE (Q5#4) <85-68-7>
59
    423 3.3'-DICHLOROBENZIDINE (Q5#5) <91-94-1>
60
    405 BENZD(A)ANTHRACENE (Q5#6) <56-55-3>
    413 BIS(2-ETHYLHEXYL) PHTHALATE (Q5#7) <117-81-7>
61
62
    418 CHRYSENE (G5#8) <218-01-9>
63
    *497 D12-PERYLENE (15#6)
64
    429 DI-N-OCTYL PHTHALATE (G6#2) <117-84-0>
    407 BENZO(B)FLUORANTHENE (Q6#3) <205-99-2>
65
    409 BENZD(K)FLUDRANTHENE (Q6#4) <207-08-9>
66
    406 BENZO(A)PYRENE (G6#5) (50-32-8)
67
    437 INDENO(1,2,3-C,D)PYRENE (06#6) <193-39-5>
68
                                                              5TD
2/10
    419 DIBENZO(A, H) ANTHRACENE (G6#7) <53-70-3>
69
    408 BENZO(G, H, I)PERYLENE (G6#8) <191-24-2>
70
71
    #619 2-FLUOROPHENOL (SS#1)
72
    #612 D5-PHENOL (58#2)
73
    #634 2-CHLOROPHENOL-D4 (SS#3)
    #570 1.2-DICHLOROBENZENE-D4 (SS#4)
74
75
    #447 D5-NITROBENZENE (SS#5)
76
    #448 2-FLUOROBIPHENYL (SS#6)
    #628 2,4,6-TRIBROMOPHENOL (86#7)
77
78
    #496 D14-TERPHENYL (SS#8)
    m/z
          Scan
No
                 Time
                        Ref
                               RRT Meth
                                             Area(Hght)
                                                                           %Tot
                                                           Amount
51
    178
          1421
                 11:42
                        45
                                    A BV
                             1.003
                                             342912.
                                                           25. 000 NG
                                                                           1.30
52
          1459
                        45
                                    A BV
    167
                 12:01
                             1.030
                                             167213.
                                                           25, 000 NO
                                                                           1.30
                                    A VB
53
    178
          1430
                 11:47
                        45
                             1.009
                                             266276.
                                                           25, 000 NG
                                                                           1.30
54
    147
          1516
                 12: 29
                        45
                             1.070
                                    A BB
                                             599981.
                                                           25, 000 NG
                                                                           1.30
55
    202
          1622
                        45
                13: 21
                             1. 145
                                    A BB
                                             291538.
                                                           25. 000 NG
                                                                           1.30
    240 (1845) 15:21
56
                        56
                             1.000
                                    A BB
                                                                                  (55
                                             200340.
                                                           20,000 NG
                                                                           1.04
                13:40
                                    A BB
57
    202
          1660
                        56
                             0.890
                                             353288.
                                                           25, 000 NO
                                                                           1.30
                        56
    149
          1769
                14:34
58
                             0. 949
                                    A BV
                                             127104.
                                                           25, 000 NG
                                                                           1.30
59
    252
          1859
                15: 19
                       56
                             0. 997
                                    A BB
                                              24716.
                                                           25. 000 NG
                                                                           1.30
60
    228
          1864
                 15: 21
                        56
                             0. 999
                                   A BV
                                             275795.
                                                           25, 000 NG
                                                                           1.30
    149
61
          1867
                 15: 22
                        56
                             1.001
                                   A BV
                                             291028.
                                                           25.000 NG
                                                                           1.30
62
    228
          1870
                15: 24
                        56
                             1.003
                                   A VB
                                             208441.
                                                           25, 000 NG
                                                                           1.30
    264 2138
149 1978
                7: 36 (17)
                             1.000 A BV
                                                                                 J.S.E
63
                        63
                                             113516.
                                                           20, 000 NC
                                                                           1.04
                16: 17
                        63
                                   A VB
                             0. 925
                                             247340.
                                                           25.000 NO
                                                                           1.30
                        63
                                                                                 h(h)f
    252 (2055)
                 16: 55
                             0. 961
                                     A BV
                                             203783.
                                                           25.000 NO
                                                                           1.30
SAMPLE DATA PACKAGE
                                     17744 CHY 11
                                                                              1739
                                RRT
                  Time
                         Ref
                                     Meth
                                              Area(Hght)
                                                            Amount
                                                                           %Tot
 No.
     m/z
           BCBIT
                                                                           1.30 b(k)
     252 2060 16: 58
252 2126 17: 30
                                     A VB
                         63
                             0. 964
                                              167083.
                                                            25, 000 NG
                 17:30
                              0. 994
                                     A BB
                                              133588.
                                                            25, 000 NC
                                                                           1.30
                         63
                              1.145
           2448
 68
     276
                 20: 10
                         63
                                     A BB
                                              133551.
                                                            25, 000 NG
                                                                            1.30
                                     A BB
 69
     278
           2455
                 20:13
                         63
                              1.148
                                              123552.
                                                            25, 000 NG
                                                                           1.30
                 20: 57
                                     A BB
 70
     276
          2544
                         63
                             1. 190
                                              128353.
                                                            25, 000 NG
                                                                           1.30
            499
                   4:07
                                     A BB
 71
     112
                          1
                              0.730
                                              152868.
                                                            25,000 NG
                                                                           1.30
                                     A BV
 72
      99
            632
                   5: 12
                          1
                              0. 924
                                              182372.
                                                            25, 000 NG
                                                                            1.30
 73
     132
            651
                   5: 22
                              0. 952
                                     A BB
                                              148420.
                                                            25, 000 NG
                                                                            1.30
 74
     152
            707
                   5: 49
                          1
                              1.034
                                     A BB
                                              108440.
                                                            25,000 NG
                                                                            1.30
 75
      82
            770
                   6:20
                         13
                              0.873
                                     A VB
                                              207772.
                                                            25, 000 NG
                                                                            1.30
                                     A BB
 76
     172
           1058
                   B: 43
                         26
                              0. 905
                                              250424.
                                                            25, 000 NG
                                                                            1.30
```

No Ret(L) Ratio RRT(L) Ratio

10:42

13: 53

26

56

1. 112

0. 903

1300

1685

77

78

330

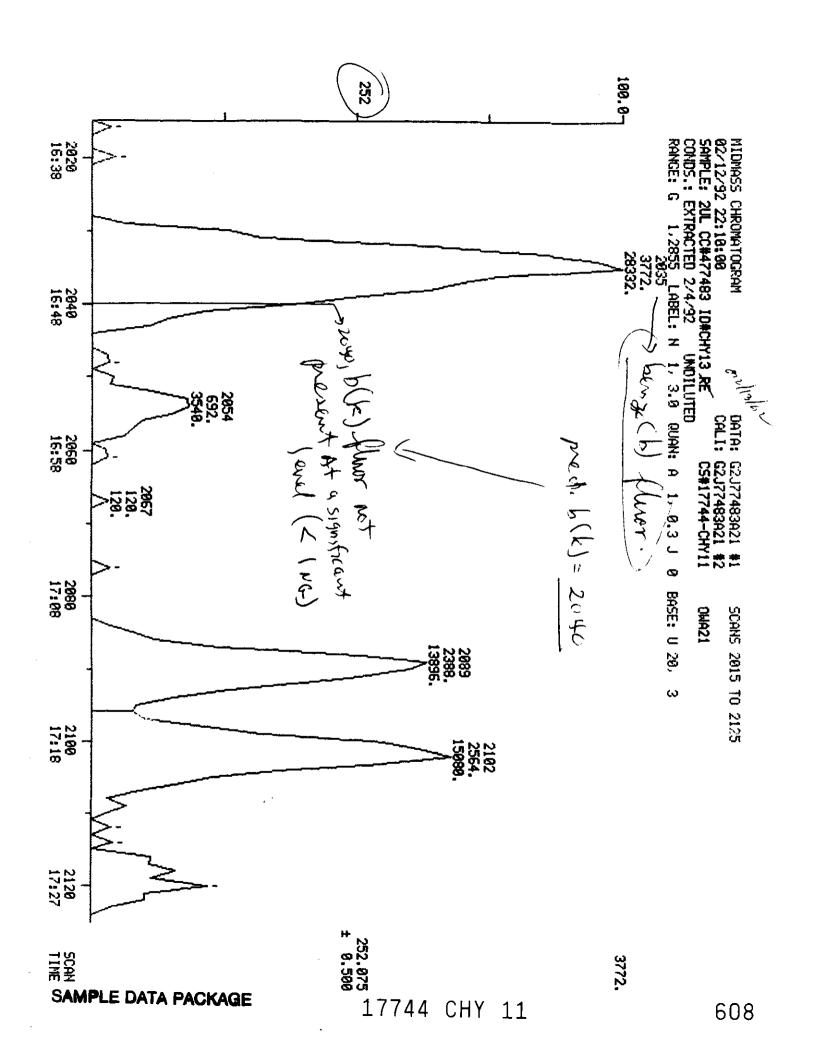
244

Amnt

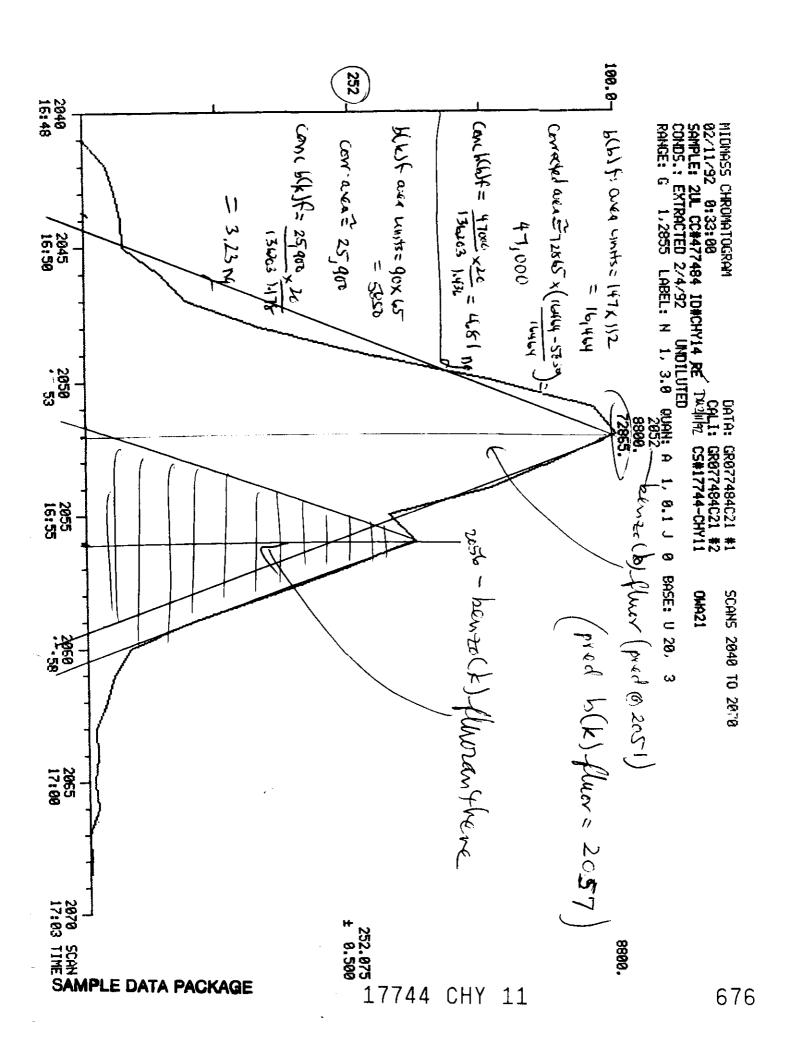
A BB

A BB

25, 000 NG


25, 000 NG

1.30


1.30

59392.

215176.


```
431 FLUDRANTHENE (04#10) <206-44-0>
35
     *459 D12-CHRYSENE (IS#5)
56
57
     445 PYRENE (Q5#3) <129-00-0>
     415 BUTYLBENZYL PHTHALATE (Q5#4) <85-68-7>
58
59
     423 3,3'-DICHLOROBENZIDINE (Q5#5) <91-94-1>
     405 BENZO(A)ANTHRACENE (Q5#6) C56-55-3>
60
61
     413 BIS(2-ETHYLHEXYL) PHTHALATE (Q5#7) <117-81-7>
62
     418 CHRYSENE (Q5#8) <218-01-9>
63
     *497 D12-PERYLENE (IS#6)
64
     429 DI-N-DCTYL PHTHALATE (06#2) <117-84-0>
65
     407 BENZO(B)FLUORANTHENE (G6#3) <205-99-2>
66
     409 BENZO(K)FLUORANTHENE (G6#4) <207-08-9>
     406 BENZO(A)PYRËNE (Q6#5) <50-32-8>
67
48
     437 INDENU(1,2,3-C,D)PYRENE (Q6#6) <193-39-5>
67
     419 DIBENZO(A,H)ANTHRACENE (G6#7) <53-70-3>
70
     408 BENZO(G,H,I)PERYLENE (G6#8) <191-24-2>
71
     #619 2-FLUOROPHENOL (SS#1)
     #612 D5-PHENOL (SS#2)
72
73
     #634 2-CHLOROPHENOL-D4 (SS#3)
74
     #570 1,2-DICHLOROBENZENE-D4 (SS#4)
75
     #447 D5-NITROBENZENE (SS#5)
76
     #448 2-FLUOROBIPHENYL (SS#6)
77
     #628 2.4.6-TRIBROMOPHENOL (SS#7)
78
     #496 D14-TERPHENYL (SS#8)
     m/z
                                      Meth
No
          Scan
                   Time
                         Ref
                                RRT
                                               Area(Hght)
                                                             Amount
                                                                              %Tot
51
     178
          1405
                  11:34
                         45
                              1.003
                                      A BV
                                                28368.
                                                              1.391 NG
                                                                              0. 34
52
     NOT FOUND
53
     NOT FOUND
     NOT FOUND
54
                                      A BB
55
     202
          1605
                 13:13
                         45
                              1.146
                                                42024.
                                                                             0. 69 \
4. 85
                                                              2.827 NG
                                                                                       15
     240
56
          1848
                 15:13
                         56
                              1.000
                                      A BB
                                               170924.
                                                             20.000 NG
     202
57
          1643
                 13: 32
                         56
                              0.889
                                      A BB
                                                43840.
                                                              2. 609 NG
                                                                             0. 63 \
58
     NOT FOUND
59
     NOT FOUND
          1852 46
                                      A#BB 14200
                                                         1.95 × 3. 909 NG
                         56
60
     228
                 15: 15
                              1.002
                                                38464.
                                                                             O. 957
61
     149
          1852
                 15: 15
                         36
                              1.002
                                      A BB
                                                13924.
                                                              1.026 NC
                                                                             0.25
62
     228
          1852
                 15:15
                         54
                              1.002
                                      A VB
                                                19264.
                                                              1. 984 NG
                                                                             0.484
63
     264
          2114
                 17:25
                         63
                              1.000
                                      A BB
                                               137048.
                                                             20, 000 NG
                                                                             4.85 /
64
     NOT FOUND
                              0. 963
45
     252
          2035
                 16:45
                         63
                                      A BB
                                                28332.
                                                                <del>-596-</del> NG
                                                                             0.87 Y
SAMPLE DATA PACKAGE
                                      17744 CHY
                                                                                  587
                                                               (J24).
                                                        11
 No
      m/z
           Scan
                    Time
                          Ref
                                 RRT
                                       Meth
                                                Area(Hght)
                                                              Amo un t
                                                                              %Tot
                                                                              0. 74/10
     252
           2023
                  16:40 <del>(65</del>
 66
                               0_963 ZA-88
                                                 28332
                                                          C 927 3, 276 NO
      252
           2102
 67
                  17:19
                          . 63
                               0.994
                                       A VB
                                                 15080.
                                                               2. 141 NG
                                                                              0. 52
 68
      276
           2412
                  19:52
                          63
                               1.141
                                       A BB
                                                 12904.
                                                               1.674 NG
                                                                              0.41
 69
      NOT FOUND
           2503
 70
      276
                  20:37
                          63
                               1.184
                                       A BB
                                                 12060.
                                                               1.760 NG
                                                                              0. 43 >
 71
      112
             487
                    4:01
                            1
                               0.727
                                       A BV
                                                302380.
                                                              37. 696 NG
                                                                              9.14
       99
                               0. 925
 72
            620
                                       A BV
                   5:06
                            1
                                                377685.
                                                              37, 590 NG
                                                                              9.11
 73
             638
      132
                   5: 15
                            1
                               0. 952
                                       A BV
                                                283556.
                                                              30, 154 NG
                                                                              7.31
 74
      152
             693
                   5:42
                            1
                               1.034
                                       A BB
                                                188116.
                                                              30, 146 NG
                                                                              7.31
 75
       82
             755
                   6:13
                          13
                               0.871
                                       A BB
                                                325917.
                                                              31.031
                                                                              7.52
                                                                      NG
 76
      172
            1044
                   8:36
                          26
                               0. 905
                                         BV
                                                512132.
                                                              31, 329 NG
                                                                              7.60
 77
      330
                                       A BB
           1285
                   10:35
                          26
                               1.114
                                                              26. 744 NG
                                                 75332.
                                                                              6.48
 78
      244
           1670
                  13:45
                          56
                               0.904
                                       A BV
                                                387008.
                                                              35. 043 NG
                                                                              8. 50
                                                                                       A.113%.
      Ret(L) Ratio RRT(L) Ratio
 No
                                        Amn t
                                                Amnt(L)
                                                            R. Fac R. Fac(L)
                                                                             Ratio
      11:35
              1,00 10.000
 51
                                        1.39
                                                  25.00
                                                            0.064
                                                                     1.144
                                                                              0.06
 52
      11:53
                     1.000
      11:39
                    10.000
 53
```



```
52
     583 CARBAZOLE
53
    403 ANTHRACENE (Q4#8) <120-12-7>
54
    426 DI-N-BUTYL PHTHALATE (Q4#9) <84-74-2>
    431 FLUDRANTHENE (Q4#10) (206-44-0)
55
56
    *459 D12-CHRYSENE (15#5)
57
    445 PYRENE (G5#3) <129-00-0>
58
    415 BUTYLBENZYL PHTHALATE (Q5#4) <85-68-7>
59
     423 3,3!~DICHLOROBENZIDINE (05#5) <91-94-1>
60
    405 BENZO(A)ANTHRACENE (Q5#6) <56-55-3>
    413 BIS(2-ETHYLHEXYL) PHTHALATE (G5#7) <117-81-7>
61
    418 CHRYSENE (05#8) <218-01-9>
62
    *497 D12-PERYLENE (IS#6)
63
64
    429 DI-N-OCTYL PHTHALATE (Q6#2) <117-84-0>
65
    407 BENZO(B)FLUORANTHENE (G6#3) <205-99-2>
    409 BENZO(K)FLUORANTHENE (G6#4) <207-08-9>
44
                                                        CH914
    406 BENZO(A)PYRENE (G6#5) <50-32-8>
67
    437 INDENO(1,2,3-C,D)PYRENE (Q6#6) <193-39-5>
48
    419 DIBENZO(A, H) ANTHRACENE (Q6#7) <53-70-3>
69
70
    408 BENZO(Q, H, I)PERYLENE (Q6#8) <191-24-2>
    #619 2-FLUOROPHENOL (S8#1)
71
72
    #612 D5-PHENOL (98#2)
73
    #634 2-CHLOROPHENOL-D4 (SS#3)
74
    #570 1,2-DICHLOROBENZENE-D4 (SS#4)
75
    #447 D5-NITROBENZENE (SS#5)
    #448 2-FLUDROBIPHENYL (SS#6)
76
    #628 2,4,6-TRIBROMOPHENOL (SS#7)
77
78
    #496 D14-TERPHENYL (SS#8)
                       Ref
                                   Meth
    m/z
                 Time
                              RRT
                                           Area(Hght)
No
          Scan
                                                        Amount
                                                                       %Tot
                                                                       o. 85¥€S
         1417 / 11:40
    178
                       45
                            1.003
51
                                   A BV
                                            49724.
                                                         4. 408 NC
52
    NOT FOUND
        1426 11:45
                                                                       0. 20YES
                            1.009
                                   A VV
53
    178
                       45
                                             9048.
                                                         1.033 NC
    NOT FOUND
54
                       45
                                                                       2. 04YES
55
    202
                                   A BV
                                           102051.
         1617 13: 19
                            1. 144
                                                        10. 641 NC
    240 (1861 ) 15:20
                      56
                          1.000 A BB
56
                                           193728.
                                                       _20, 000 NG
                                                                       3. 84
                                                                       1. 16YES
57
    202
         1655 13:38
                       56
                            0. 889
                                  A BB
                                            82547.
                                                         6. 041 NC
                                   A BB
    149 1764
               14: 32
                      56
                            0. 948
                                             8308.
58
                                                         1. 490 NC
59
    NOT FOUND
                                                                       1. B2/ES
≥60
                       54
                            0. 999
                                   A*BV 6074 100888. 5639 9. 457 NC
    228
          1860
                15: 19
    149
                                                                       0. 91 YES
               15: 21
                       56
                            1.001
                                   A BB
61
          1863
                                            53227.
                                                         4, 728 NC
                                                   4.5/2 12. 513 NC
                            0. 999
                                   A#BV %363100888
アダ
                                                                       2. 40YES
    228
          18<u>68</u> 7 15: 19
                       56
63
    264
          2136 ) 17: 35
                       63
                            1.000
                                   A BB
                                           136203.
                                                        20,000 NG
                                                                       3.84 (5 6
                                                         4.81 = 360 mg 1. 59 YES. #
                                        47000
    NOT FOUND
64
·65/在252
                                   A BY WILL BOOKE.
         ~2052 )16: 54
                      63 0. 961
                                   17744 CHYMHanf 2/11/92
SAMPLE DATA PACKAGE
                                                                           653
```

				•					01.	N. S. A.
A1 -	-1-6	050	- .				25900 Area (Hgl	3,23	_ Z41	2031Kg
No	~ W/ Z k	-Scan	Time	Ref	RRT	Meth	🏳 'Area (Hgl	nt) Amount		%art π
961	£,252 \	-3050-	16: 54	63	0. 961	A BV7	2005 80828.	10. 079	NG.	1. 93 YES I
67	252	2123	17: 29	63	0. 994	A VV	31180.	4. 863		0. 93 VES
68	276	2444	20:08	63	1. 144	A BB	19004.	2. 965		0. 57 VES
69	278	2451	20: 11	63	1. 147	A BB	6192.	1. 044		0. 50 162
70	276	2541	20: 56	63	1. 190	A*BB	15940.	2. 586		0. 30 1€5
71	112	500	4: 07	1	0. 735	A BV	339320.	51 . 877		9. 96
72	77	630	5: 11	1	0. 926	A BV	385783.	49. 439		7. 79 9. 49
73	132	648	5: 20	1	0. 953	A BB	255616.	40, 251		7. 73
74	152	703	5: 47	1	1.034	A BB	138600.	29. 872		7. 73 5. 73
75	82	765	6: 18	13	0. 872	A BB	310960	37. 287		
76	172	1054	8: 41	26	0. 905	A BB	351540.	31. 838		7. 16
77	330	1296	10:40	26	1. 112	A BB	77132.			6. 11
78	244	- - · -	-		·			29, 455		5. 65
/ 0	~ + +	1682	13: 51	56	0. 904	A BB	328490.	39. 468	NC	フ. 58

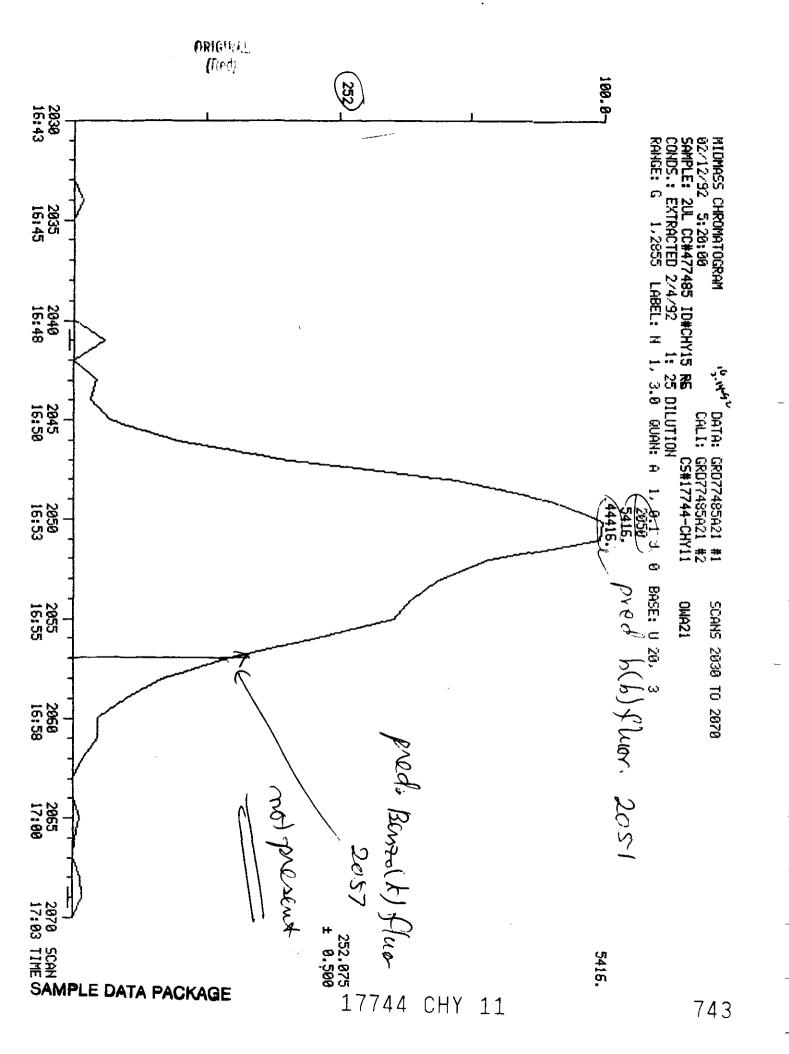
```
*497 D12-PERYLENE (IS#6)
63
64
     429 DI-N-OCTYL PHTHALATE (96#2) <117-84-0>
     407 BENZO(B)FLUORANTHENE (G6#3) <205-99-2>
65
66
     409 BENZO(K)FLUORANTHENE (Q6#4) C207-08-9>
                                                              STD
     406 BENZD(A)PYRENE (G6#5) <50-32-8>
67
86
     437 INDENO(1,2,3-C,D)PYRENE (06#6) <193-39-5>
                                                               2/11
     419 DIBENZO(A, H) ANTHRACENE (Q6#7) C53-70-3>
69
     408 BENZO(G, H, I) PERYLENE (Q6#8) <191-24-2>
70
71
     #619 2-FLUOROPHENOL (SS#1)
72
     #612 D5-PHENOL (SS#2)
73
     #634 2-CHLOROPHENOL-D4 (SS#3)
74
     #570 1,2-DICHLOROBENZENE-D4 (SS#4)
75
     #447 D5-NITROBENZENE (SS#5)
76
     #448 2-FLUOROBIPHENYL (SS#6)
77
     #628 2,4,6-TRIBROMOPHENOL (SS#7)
78
     #496 D14-TERPHENYL (SS#8)
No
     m/z
                  Time
          Scan
                        Ref
                               RRT
                                     Meth
                                              Area(Hght)
                                                           Amount
                                                                           %Tot
51
     178
          1418
                 11:41
                         45
                             1.003
                                     A BV
                                              302272.
                                                           24. 822 NC
                                                                           1.33
52
          1456
                 11:59
                         45
     167
                             1.030
                                     A BB
                                              170508.
                                                           25. 265 NG
                                                                           1.35
53
     178
          1426
                 11:45
                        45
                             1.008
                                     A VV
                                             260924.
                                                           25. 216 NG
                                                                           1.35
54
     149
          1513
                 12:28
                        45
                             1.070
                                    A BV
                                              362744.
                                                           24. 845 NG
                                                                           1.33
55
     505
          1618-
                 13:19
                        45
                             1.144
                                    A BV
                                             225092.
                                                           25. 894 NC
                                                                           1.38
          1861_15: 20
56
     240
                        56
                             1.000
                                    A BB
                                              90116.
                                                                           1.07 15 5
                                                           20.000 NG
57
     505
          1656
                13: 38
                        56
                            0. B90
                                   A BV
                                             231136.
                                                           26. 345 NC
                                                                           1.41
58
    149
                 14: 32
                                    A BV
          1765
                        56
                             0. 948
                                              103288.
                                                           25. 302 NC
                                                                           1.35
                                    A BB
59
     252
          1855
                15:17
                        56
                             0. 997
                                                7964.
                                                           24. 293 NC
                                                                          1.30
60
    228
          1860
                 15:19
                        56
                             0. 999 A BV
                                              128244.
                                                           26. 041 NC
                                                                          1.39
61
     149
          1864
                 15: 21
                        56
                             1.002
                                    A BB
                                             169928.
                                                           24. 308 NO
                                                                           1.30
62
     228
          1866 15:22
                        56
                             1.003 A VB
                                              120264.
                                                           24. 800 NG
                                                                          1.33
63
     264
          2133 17:34
                        63
                            1.000 A BB
                                              52960.
                                                           20.000 NC
                                                                                156
                                                                          1.07
64
     149
          1976 16:16
                        63
                             0. 926
                                    A BB
                                             171824.
                                                           23. 529 NG
                                                                           1.26
65
     252 (
          2049) 16: 52
                             0. 961
                                                                          1.38 6(6)
                        63
                                     A BV
                                              82496.
                                                           25. 885 NG
SAMPLE DATA PACKAGE
                                     17744 CHY 11
                                                                             1749
                         File: HG920211821
Quantitation Report
                  Time
                         Ref
                               RRT
                                                                           2. 65 b(k)
No
     m/z
          Scan
                                     Meth
                                              Area(Hght)
                                                           Amount
     252 2055 16: 55
252 2120 17: 27
 66
                         63
                             0. 963
                                     A VB
                                               80580.
                                                           12. 167 NG
 67
                         63
                             0.994
                                     A BV
                                               63072.
                                                           23. 192 NG
                                                                           1.24
     276
          2438
                 20:05
                         63
                             1.143
                                    A BB
                                               65380.
                                                           24. 477 NG
                                                                           1.31
 68
 69
     278
           2445
                 20:08
                         63
                             1.146
                                     A BB
                                                           25, 574 NG
                                                                           1.37
                                               53460.
 70
     276
           2532
                 20:51
                         63
                             1. 187
                                     A BB
                                                           24. 345 NG
                                               56044.
                                                                           1.30
                         , . 1
     112
            495
                  4:05
                             0. 728
                                    A BV
                                              170553.
                                                           24, 080 NG
 71
                                                                           1.29
 72
     99
                  5: 10
                         1
                             0. 924
            628
                                    A BB
                                              207764.
                                                           23. 697 NG
                                                                           1.27
                                     A BB
                                                           24. 038 NG
 73
     132
            647
                  5:20
                          1
                             0. 951
                                              164984.
                                                                           1.28
 74
     152
            703
                  5: 47
                             1.034
                                     A BB
                                                           24. 521 NG
                          1
                                              121528.
                                                                           1.31
 75
                  6: 18
                             0.871
                                     A VB
      82
            765
                         13
                                              226532.
                                                           23. 483 NC
                                                                           1.26
                         26
 76
     172
           1055
                  8:41
                             0. 905
                                     A BB
                                              285048.
                                                           25. 934 NG
                                                                           1.39
 77
     330
           1296
                 10:40
                         26
                             1.111
                                     A BB
                                               33340.
                                                           28. 782 NG
                                                                           1.54
                         56
                             0.904
                                     A BV
 78
     244
           1682
                 13: 51
                                              133732.
                                                           26. 487 NG
                                                                           1.42
     Ret(L) Ratio RRT(L) Ratio
                                              Amnt(L)
                                                         R. Fac R. Fac(L) Ratio
 No
                                      Amn t
     11:41
             1.00 10.000
                           0.10
                                     24.82
                                                25.00
                                                         1.142
                                                                  1.150
                                                                           0. 99
 51
     11:59
            1.00
                  1.000
                           1.03
                                     25.27
                                                25.00
                                                                  0.637
 52
                                                         0. 644
                                                                           1.01
     11:45
             1.00 10.000
                           0.10
                                     25. 22
                                                25.00
                                                         0. 986
                                                                  0. 977
                                                                           1.01
 53
                                                                  1.379
 54
            1,00 10.000
                                                25.00
     12:28
                           0.11
                                     24.85
                                                         1.371
                                                                           0. 99
                           0.11
                                                25.00
                                                                  0.821
     13:19
             1.00 10.000
                                     25.89
                                                         0.850
                                                                           1.04
 55
             1.00 10.000
 56
     15:20
                           0.10
                                     20.00
                                                20.00
                                                         1.000
                                                                  1.000
                                                                           1.00
```

· GOMO!

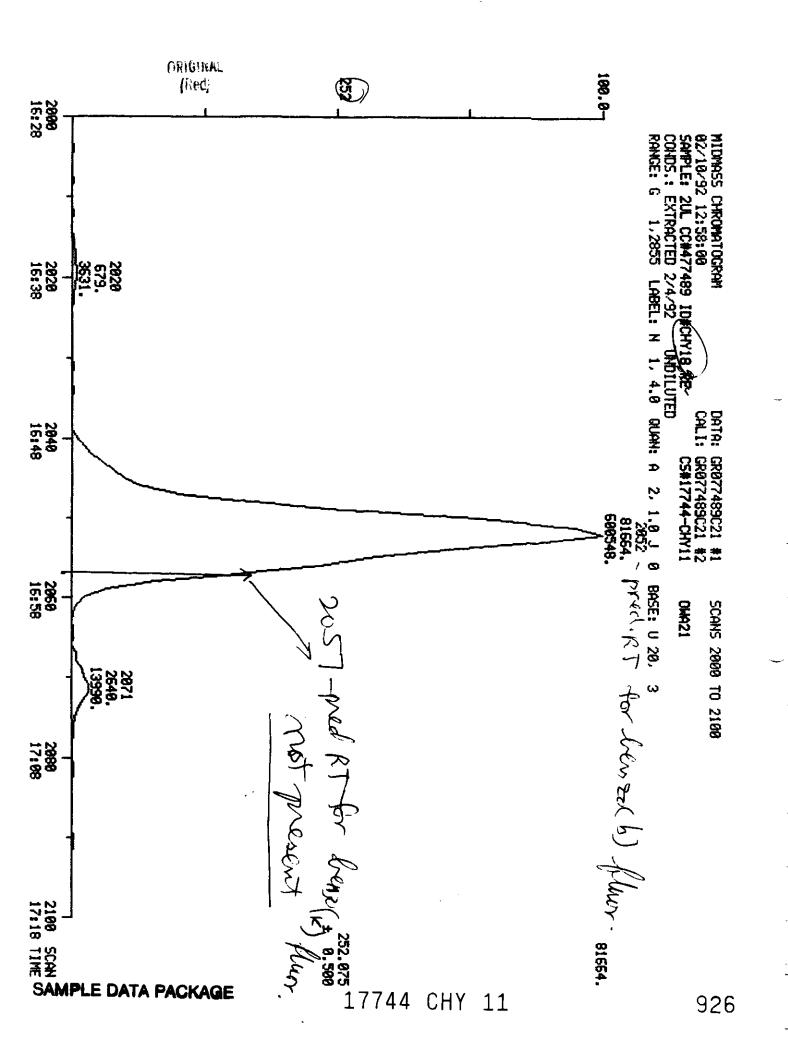
57

13:39

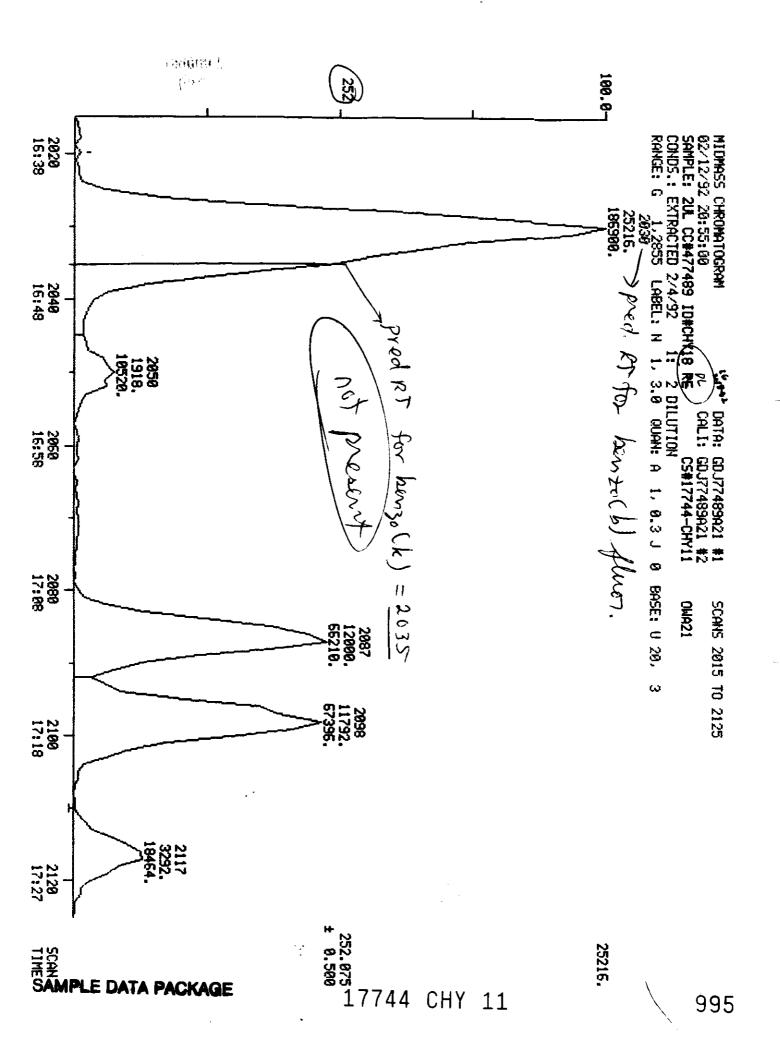
1,00 10,000


0.09

26.34


25, 00

2.052


1.947


```
58
     415 BUTYLBENZYL PHTHALATE (Q5#4) <85-68-7>
     423 3,3'-DICHLOROBENZIDINE (Q5#5) <91-94-1>
59
     405 BENZO(A)ANTHRACENE (Q5#6) <56-55-3>
60
     413 BIS(2-ETHYLHEXYL) PHTHALATE (Q5#7) <117-81-7>
61
     418 CHRYSENE (Q5#8) <218-01-9>
62
     *497 D12-PERYLENE (IS#6)
63
     429 DI-N-OCTYL PHTHALATE (Q6#2) <117-84-0>
64
     407 BENZO(B)FLUORANTHENE (Q6#3) <205-99-2>
65
     409 BENZO(K)FLUORANTHENE (Q6#4) <207-08-9>
66
     406 BENZO(A)PYRENE (Q6#5) <50-32-8>
67
     437 INDENU(1,2,3-C,D)PYRENE (Q6#6) <193-39-5>
68
     419 DIBENZO(A, H) ANTHRACENE (G6#7) <53-70-3>
69
70
     408 BENZO(G, H, I)PERYLENE (G6#8) <191-24-2>
     #619 2-FLUOROPHENOL (SS#1)
71
72
     #612 D5-PHENOL (SS#2)
73
     #634 2-CHLOROPHENOL-D4 (SS#3)
74
     #570 1,2-DICHLOROBENZENE-D4 (SS#4)
75
     #447 D5-NITROBENZENE (SS#5)
     #448 2-FLUOROBIPHENYL (SS#6)
76
77
     #628 2,4,6-TRIBROMOPHENOL (SS#7)
     #496 D14-TERPHENYL (SS#8)
                                     Meth
                                              Area(Hght)
                         Ref
                                RRT
                                                                           %Tot
     m/z
          Scan
                  Time
                                                           Amount
                                                                           1.37465
                                     A VV
     178
          1417 - 11:40
                         45
                             1.002
                                               34388.
                                                            2. 902 NG
51
                                                            2. 731 NG
                                     A BV
                                                                           1. 29 NO
          1456
                 11:59
                         45
                             1,030
                                               18256.
52
     167
                                               13574.
                                                                           0.63M
                                     A*VB
                                                            1.327 NG
53
     178
          1427~ 11:45
                         45
                              1.009
     NOT FOUND
54
                         45
                                     A BB
                                               62086.
                                                            7.035 NG
                                                                           3. 3240
55
     202
          1618
                 13:19
                             1.144
                                                                                    155
                                                                           9.45
                                     A BV
                                              122564.
     240
          1861
                 15:20
                         56
                             1.000
                                                           20, 000 NG
56
                                                                           2. 28 yc5-
57
     202
          1657
                 13:39
                         56
                             0.890
                                     A BB
                                               60743.
                                                            4.831 NG
58
     NOT FOUND
                                                                           4. 20 NO
                                                            8. 900 NG
          1858
                 15:18
                         56
                             0.998
                                     A BV
                                                3856.
59
     252
                                                                           3. 37 485
                                     A*BB 20616 49740: 2.956
     228 8<sup>10</sup>1045 15: 21
                         56
                             1.002
                                                             7: 127 NO
60)
                                                                           0.61 10 465
                                     A BV
                                               11926.
                 15:21
                         56
                             1.002
                                                             1, 290 NG
61
     149
          1864
                                     A*BB 24652 49740. 3.767
                                                            7. 602 NG
                                                                           3. 59 465
620
     228
          1865
                 15:21
                         56
                             1.002
                                                                                     156
63
          2133
                 17:34
                         63
                             1.000
                                     A BV
                                               91208.
                                                           20,000 NG
                                                                           9.45
     264
     NOT FOUND
                                                                           3.6948S
                                               44416. 7.90¶
          2050
                         63
                             0..961
                                     A BB
                 16:53
                                                                                1604
SAMPLE DATA PACKAGE
                                     17744 CHY
                                                                                12242
 No m/z
           Scan
                         Ref
                   Time
                                RRT
                                     Meth
                                              Area (Hght)
                                                            Amount
                                                                           %Tat
 66 ( 252 PASO
                  16:53
                         63
                                961
                                     A-BB
                                                                            3.7045
                                               44415. 7.405 B. 001 NO
 67
     252
          2120
                  17:27
                         63
                              0.994
                                     A VB
                                                                            1.73 45
                                                15892.
                                                             3. 658 NG
 68
     276
          2441
                 20:06
                         63
                              1.144
                                     A BV
                                                10664.
                                                             2. 368 NG
                                                                            1.12405
 69
     NOT FOUND
 70
     276
          2532
                 20:51
                         63
                              1.187
                                     A*BV
                                                8184.
                                                             2. 120 NG
                                                                           1.00 487
 71
     NOT FOUND
 72
     NOT FOUND
 73
     NOT FOUND
 74
     NOT FOUND
 75
     NOT FOUND
 76
     NOT FOUND
77
     330
          1297
                 10:41
                         26
                              1.114
                                     A BB
                                                2328.
                                                             1. 925 NG
                                                                           0.91
 78
     244
           1682
                 13:51
                         56
                             0.904
                                     A BB
                                               12660.
                                                             1,740 NG
                                                                           0.82
     Ret(L) Ratio RRT(L) Ratio
No
                                      Amn t
                                              Amnt(L)
                                                         R. Fac R. Fac(L) Ratio
51
     11:41
             1.00 10.000
                           0.10
                                      2. 90
                                                25.00
                                                         0.133
                                                                  1.142
                                                                           0.12
52
     11:59
             1.00
                   1.000
                           1.03
                                      2.73
                                                25.00
                                                         0.070
                                                                  0.644
                                                                           0.11
53
     11:45
             1.00 10.000
                           0.10
                                      1.33
                                                25.00
                                                         0.052
                                                                  0.986
 54
     12:28
                  10.000
```



```
-UG DENZULA/FYKENE (46#3) <50-32-8>
 رن
      437 INDENO(1,2,3-C,D)PYRENE (G6#6) <193-39-5>
 68
      419 DIBENZO(A, H) ANTHRACENE (G6#7) <53-70-3>
 49
      408 BENZO(C, H, I)PERYLENE (G6#8) <191-24-2>
 70
      #619 2-FLUOROPHENOL (SS#1)
 71
      #612 D5-PHENOL (SS#2)
 72
                                                                 CH418 motod
      #634 2-CHLORUPHENOL-D4 (SS#3)
 73
      #570 1,2-DICHLOROBENZENE-D4 (SS#4)
 74
      #447 D5-NITROBENZENE (SS#5)
 75
      #448 2-FLUOROBIPHENYL (SS#6)
 76
      #628 2,4,6-TRIBROMOPHENOL (95#7)
 77
      #496 D14-TERPHENYL (SS#8)
 78
                                                 Area(Hght)
                                                                                %Tot
                                  RRT
                                        Meth
                                                               Amount
      m/z
                    Time
                           Ref
 No
            Scan
                                                                                2. 944
                                        A BV
                                                               27, 221 NG
                                                 341736.
            1416
                   11:40
                           45
                                1,003
 51
      178
                                                                                0. 42 4es
                                        A VB
                                                   32036.
                                                                 3. 924 NG
            1453
                   11:58
                           45
                                1.029
 52
      167
                                                                                0. 32 465
                                        A W
                                                   32672.
                                                                 2. 962 NG
            1425
                           45
                                1.009
  53
      178
                   11:44
      NOT FOUND
  54
                                                                                8. 73 465 E
                           45
                                        A BB
                                                 795781.
                                                              ~80, 740 NG
  55
      202
            1618
                   13:19
                                1.146
                                                               20. 000 NG
                                        A BB
                                                  189320.
                                                                                2.16
      240
            1861
                   15:20
                           56
                                1.000
  56
                                                  732178.
                                                                58, 935 NG
                                                                                6.3740
  57
      202
            1656
                   13:38
                           56
                                0.890
                                        A BB
      NOT FOUND
  58
      NOT FOUND
  59
                                                                                3. 95 4°
                                0.999
                                        A BV
                                                  348068.
                                                                36, 564 NC
      228
            1859
                   15:19
                           56
  60
                                        A BB
                                                   13272.
                                                                 1.691 NC
                                                                                0. 18<sup>N°</sup>
                           56
                                1.001
      149
            1862
                   15:20
 61
                                                                                3. 77 4<sup>05</sup>
                                                                34. 900 NG
                                        A VV
                                                  308040.
      228
            1865
                   15:21
                           56
                                1.002
  62
                                                                                2.16
                                1.000
                                        A BB
                                                   98796.
                                                                20, 000 NG
            2134
                   17:34
                           63
      264
  63
      NOT FOUND
  64
                                        A BULOSIS 625398. 99:550 91. 905 NO
                                                                                9. 944ウ
            2052
                   16: 54
                           63
                                0. 962
  65 & 252
                                                                    4100 vg)kg
II
                                                                                     903/
 SAMPLE DATA PACKAGE
                                         17744 CHY
a.
  No m/z
            Scan
                    Time
                           Ref
                                  RRT
                                        Meth
                                                  Area (Hght)
                                                                Amount
                                                                                %Tot
  46 (<del>* 232 - 2032 -</del>
                            63
                                                @100070-14456117. OFC. NO
                                .
                                  942
                                        A DUVGGC
                                                                               12. 87 46
 67
      252
            2122
                   17:28
                                                                                2. 91 4es
                           63
                                0.994
                                        A VB
                                                  137591.
                                                                26. 738 NG
      276
            2442
  48
                   20:07
                           63
                                1.144
                                        A BB
                                                  123538.
                                                                21. 525
                                                                       NC
                                                                                2. 33 4
 69
      NOT-FOUND 27 Y
                       2498
                                             34183 24214
                                                           7.630 6-160
 70
      276
            2536
                   20:53
                           63
                                1.188
                                        A BB
                                                 101238.
                                                                                2. 26 UP)
                                                               20.881 NG
 71
      112
             499
                    4:07
                                0.734
                            1
                                        A BB
                                                 166604
                                                               36, 171 NG
                                                                                3. 71
 72
       99
             629
                    5: 11
                            1
                                0. 925
                                        A BV
                                                 241168.
                                                                44. 336 NG
                                                                                4.79
 73
      132
             648
                    5:20
                            1
                                0. 953
                                        A BV
                                                  167116.
                                                               31.390 NG
                                                                                3.39
 74
      152
             703
                    5:47
                            1
                                1.034
                                        A BB
                                                 116704.
                                                               31.701 NG
                                                                                3.43
 75
       82
             764
                    6:17
                           13
                                0.871
                                        A BV
                                                 214856.
                                                               39. 569 NG
                                                                                4. 28
 76
      172
            1053
                    8: 40
                           26
                                0. 905
                                        A BB
                                                 371204.
                                                               32.096 NG
                                                                                3.47
 77
      330
            1295
                   10:40
                           26
                                1.113
                                        A BB
                                                  27776.
                                                               13. 530 NG
                                                                                1.46
 78
      244
            1681
                   13:51
                           56
                                0. 903
                                        A BB
                                                 337416.
                                                               39. 662 NC
                                                                                4.29
 No
      Ret(L) Ratio RRT(L) Ratio
                                         Amnt
                                                 Amnt(L)
                                                             R. Fac R. Fac(L)
                                                                              Ratio
 51
      11:42
              1.00 10.000
                             0.10
                                        27. 22
                                                   25.00
                                                             1. 251
                                                                      1.149
                                                                                1.09
 52
      12:00
              1.00
                     1.000
                             1.03
                                         3. 92
                                                   25.00
                                                             0.117
                                                                      0.747
                                                                                0.16
 53
      11:47
              1.00 10.000
                             0.10
                                         2.96
                                                   25.00
                                                             0.120
                                                                      1.010
                                                                                0.12
 54
      12:29
                    10.000
 55
      13:21
              1.00 10.000
                             0.11
                                        80.74
                                                   23.00
                                                             2.914
                                                                      0.902
                                                                                3. 23
 56
      15:21
              1.00 10.000
                             0.10
                                        20.00
                                                   20/00
                                                             1.000
                                                                      1.000
                                                                                1.00
 57
      13:40
              1.00 10.000
                             0.09
                                        58. 94
                                                   25. 00
                                                             3.094
                                                                      1.312
                                                                                2.36
 58
      14:34
                    10.000
 59
      15:18
                    20.000
 40
      15:21
              1.00 10.000
                             0.10
                                        36. 56
                                                   25.00
                                                             1.471
                                                                      1.006
                                                                                1.46
      15:22
 61
              1.00 10.000
                             0.10
                                         1.69
                                                   25.00
                                                             0.056
                                                                      0.829
                                                                                0.07
 62
      15:23
              1.00 10.000
                             0.10
                                        34. 90
                                                   25.00
                                                             1.302
                                                                      0. 932
                                                                                1.40
 63
      17:36
              1.00 10.000
                             0.10
                                        20.00
                                                   20.00
                                                             1.000
                                                                      1.000
                                                                                1.00
 64
      16:17
                    10.000
                                                                                      LORF-
 65
      16:55
              1.00 10.000
                             0.10
                                        71 70
```



```
1 .
  59
      60
      405 BENZO(A)ANTHRACENE (Q5#6) <56-55-3>
  61
      413 BIS(2-ETHYLHEXYL) PHTHALATE (G5#7) <117-81-7>
      418 CHRYSENE (Q5#8) <218-01-9>
 62
      *497 D12-PERYLENE (IS#6)
  63
      429 DI-N-OCTYL PHTHALATE (Q6#2) <117-84-0>
  64
      407 BENZO(B)FLUORANTHENE (Q6#3) <205-99-2>
  65
      409 BENZO(K)FLUORANTHENE (Q6#4) <207-08-9>
 66
      406 BENZO(A)PYRENE (G6#5) <50-32-8>
  67
                                                                CHYIEDL
      437 INDENO(1,2,3-C,D)PYRENE (G6#6) <193-39-5>
 68
 69
      419 DIBENZO(A,H)ANTHRACENE (Q6#7) <53-70-3>
  70
      408 BENZO(G,H,I)PERYLENE (Q6#8) <191-24-2>
  71
      #619 2-FLUOROPHENDL (SS#1)
  72
      #612 D5-PHENOL (SS#2)
 73
      #634 2-CHLOROPHENOL-D4 (SS#3)
  74
      #570 1,2-DICHLOROBENZENE-D4 (SS#4)
  75
      #447 D5-NITROBENZENE (SS#5)
  76
      #448 2-FLUOROBIPHENYL (SS#6)
      #628 2,4,6-TRIBROMOPHENOL (SS#7)
  77
  78
      #496 D14-TERPHENYL (SS#8)
      m/z
            Scan
                    Time
                           Ref
  No
                                  RRT
                                        Meth
                                                 Area(Hght)
                                                                Amount
                                                                                %Tot
                                                                                2. 43 465
  51
      178
            1401
                   11:32
                           45
                                1.003
                                        A BV
                                                  170436.
                                                                14, 871 NG
                                                                                0. 47 4<sup>e5</sup>
  52
      167
            1438
                   11:51
                           45
                                1.029
                                        A BB
                                                   23228.
                                                                 2.845 NG
  53
      178
            1409
                   11:36
                           45
                                1.009
                                        A VV
                                                   25788.
                                                                                0. 42 165
                                                                 2, 586 NG
  54
      NOT FOUND
                                                                                7. 02 465
  55
      202
            1601
                   13: 11
                           45
                                1.146
                                        A BV
                                                 358208.
                                                                42, 890 NG
  56
      240
            1844
                   15:11
                           56
                                1.000
                                        A BB
                                                   85720.
                                                                20,000 NG
                                                                                3. 27
                                                                                5. 92 469
                                        A BB
  57
      202
            1639
                   13:30
                           56
                                0.889
                                                 304797.
                                                                36, 168 NG
  58
      NOT FOUND
  59
      NOT FOUND
                                                                                3. 04 4<sup>CS</sup>
  60
      228
            1842
                   15:10
                           56
                                0.999
                                        A BV
                                                   91680.
                                                                18, 580 NG
                                                                                0. 38 🤲 NO
      149
            1848
                   15:13
                           56
                                1.002
  61
                                        Α
                                          BB
                                                   15852.
                                                                 2, 328 NG
      228
                                        A VV
  62
            1848
                   15: 13
                           56
                                1.002
                                                  109664.
                                                                                3. 68 4( )
                                                                22, 520 NG
  63
      264
            2110
                   17:23
                           63
                                1.000
                                          BV
                                        Α
                                                   64684.
                                                                20, 000 NG
                                                                                3.27
                                                                                       IS (
  64
      NOT FOUND
  65 € 252
                                        A BV/14/041-197077 47-10
                                                                                8. 23465
            2030
                   16:43
                           63
                                0.962
                                                               50, 311
                                                               = 4500 (5) 129
16
                                                                      969
                          Ref
     m/z
           Scan
                   Time
                                 RRT
                                       Meth
                                                Area(Hght)
                                                              Amount
                                                                               %Tot
                                                                               7. 5048 Nic
                                       A TUTAL OFFICE 1948
_66<sup>48</sup>√3<del>52__200</del>0
                 <del>- 133 + 133 -</del>
                         <del>-63</del>
                               <del>0. 762</del>4
                                                              45. 664
                                       A VV
                                                                               3. 38 44
     252
           2098
                  17:17
                          63
                               0.994
67
                                                 68668.
                                                              20, 655 NG
                                                                               3. 36 45
                                       A BB 41357 79312. 19,07321-777 NG
           2408
                  19:50
68
     276
                          63
                               1.141
           2414
                                       A VB /4084 26772: 4.468
                                                                               1.48 45
     278
                  19:53
69
                          .63
                               1.144
                                                                9: 055 NG
                                                                               3. 64 465
                                       A BB 45400 72033. 20.221 22. 275 NG
 70
     276
           2501
                  20: 36
                          63
                               1.185
            483
 71
     112
                   3: 59
                           1
                               0.725
                                       A BB
                                                116756.
                                                              25, 493 NG
                                                                               4.17
      99
72
            615
                   5:04
                           1
                               0. 723
                                       A BB
                                                148084.
                                                              25.814 NG
                                                                               4. 22
 73
     132
            633
                   5:13
                           1
                               0. 950
                                       A BB
                                                110520.
                                                              20. 585 NG
                                                                               3.37
 74
     152
            688
                   5:40
                            1
                               1.033
                                       A BB
                                                 60392.
                                                               16. 950 NG
                                                                               2.77
                                                                               3.42
 75
      82
            750
                   6:11
                          13
                               Q. 869
                                       A BB
                                                126120.
                                                              20. 927 NG
 76
     172
           1039
                   8:33
                          26
                               0.904
                                         BB
                                                                               3.08
                                       Α
                                                173808.
                                                               18.830 NG
 77
     330
           1280
                  10:32
                          26
                               1.114
                                         BB
                                                 27244.
                                                                               2.80
                                       Α
                                                               17. 129 NG
 78
     244
           1665
                  13:43
                          56
                               0.903
                                       A BB
                                                126276.
                                                               22. 799 NG
                                                                               3.73
     Ret(L) Ratio RRT(L) Ratio
                                                            R. Fac R. Fac(L) Ratio
 No
                                        Amnt
                                                Amnt(L)
     11:35
             1.00 10.000
                             0.10
                                       14.87
                                                   25.00
                                                            0. 481
                                                                      1.144
                                                                               0.59
 51
 52
     11:53
             1.00
                    1.000
                             1.03
                                        2.84
                                                   25.00
                                                            0.093
                                                                      0.815
                                                                               0.11
 53
     11:39
             1.00 10.000
                             0.10
                                        2.59
                                                   25.00
                                                            0.103
                                                                      0. 996
                                                                               0.10
 54
     12:22
                   10.000
```

TED BUITLBENZYL PHTHALATE (Q5#4) C85-68-7>

50

13:14

55

1,00 10,000

0.11

42.89

25.00

1.431

0.834

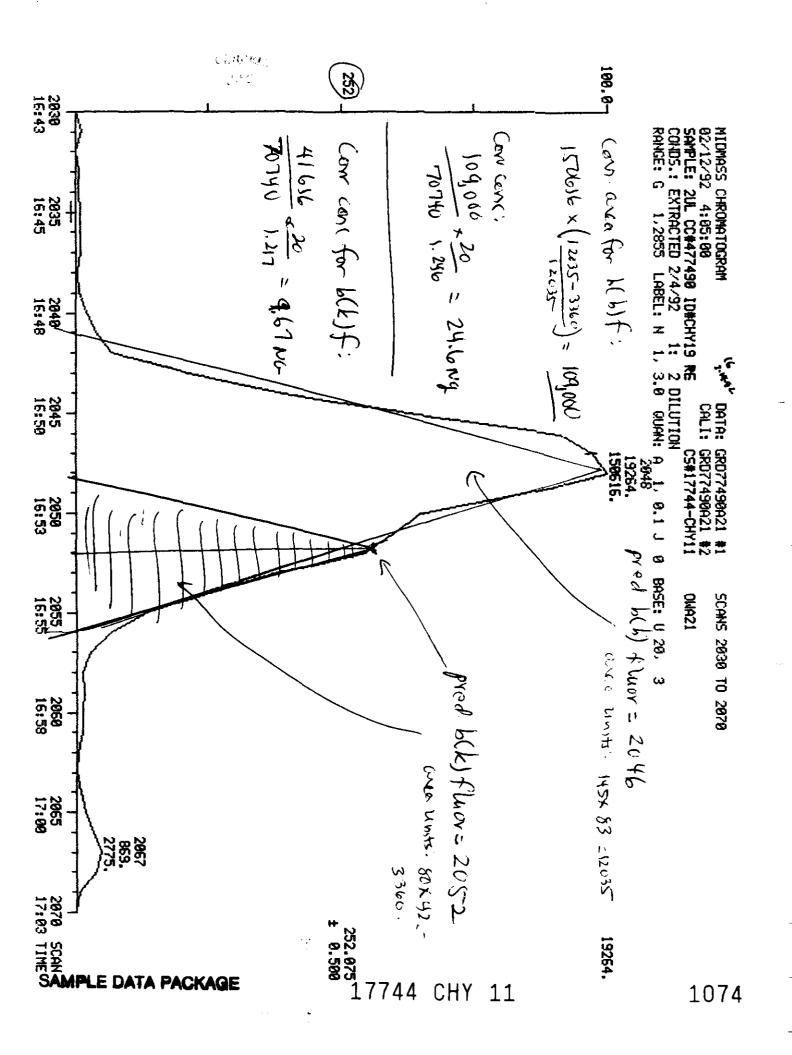
1.72

L-hitellist.

EPA SAMPLE NO. EPA SAMPLE NO. SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET CHY18 CHY18DL Lab Name: COMPUCHEM.RTP Contract: 68D10083 SDG No.: CHY11 Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO 3 No.: CHY11 Matrix: (soil/water) SOIL___ Lab Sample ID: 477489 477489 GDJ77489A21 30.4 (g/mL) G Lab File ID: Sample wt/vol: GR077489C21 LOW 01/29/92 Level: (low/med) Date Received: 01/29/92 t Moisture: ____28 decanted: (Y/N) N Date Extracted: 02/04/92 1: 02/04/92 Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/10/92 02/12/92 Injection Volume: _ 2.0(uL) 2.0 Dilution Factor: _ or: GPC Cleanup: (Y/N) Y___ pH: 6.1 CONCENTRATION UNITS: rs: COMPOUND Q CAS NO. (ug/L or ug/Kg) UG/KG Q **3/KG** 108-95-2-----Phenol 450 U 900 111-44-4----bis(2-Chloroethyl)Ether 450 900 U 95-57-8-----2-Chlorophenol 900 TT 450 IJ 541-73-1-----1,3-Dichlorobenzene 450 900 IJ 106-46-7-----1,4-Dichlorobenzene 450 900 U 95-50-1-----1,2-Dichlorobenzene 900 U 450 Ħ 95-48-7----2-Methylphenol 450 900 U 108-60-1----2,2'-Oxybis(1-Chloropropane) 450 900 106-44-5-----4-Methylphenol 900 Ħ 450 U 621-64-7----N-Nitroso-Di-n-Propylamine 450 900 U 67-72-1-----Hexachloroethane_ 900 450 IJ 98-95-3-----Nitrobenzene 900 Ü 450 Ħ 78-59-1-----Isophorone 450 U 900 U 88-75-5----2-Nitrophenol 900 450 П 900 U 105-67-9----2,4-Dimethylphenol 450 111-91-1-----bis(2-Chloroethoxy)Methane 450 900 U U 120-83-2----2,4-Dichlorophenol 900 IJ 450 TI 120-82-1-----1,2,4-Trichlorobenzene 450 900 U 91-20-3-----Naphthalene 450 U 900 U 106-47-8-----4-Chloroaniline 900 11 450 Ħ 87-68-3-----Hexachlorobutadiene 450 900 U 59-50-7-----4-Chloro-3-Methylphenol 450 U 900 U 91-57-6----2-Methylnaphthalene 900 U 450 u 77-47-4-----Hexachlorocyclopentadiene 450 900 U 88-06-2-----2,4,6-Trichlorophenol 900 U TT 450 2200 U 95-95-4----2,4,5-Trichlorophenol 1100 Ħ 91-58-7----2-Chloronaphthalene 450 900 U 88-74-4----2-Nitroaniline 2200 U 1100 U 900 U 131-11-3-----Dimethyl Phthalate 450 U 208-96-8-----Acenaphthylene 450 900 U U 900 U 606-20-2----2,6-Dinitrotoluene 450 TT 99-09-2----3-Nitroaniline 1100 U 2200 IJ 83-32-9----Acenaphthene Ŋ 89 FORM I SV-1 3/90

SAMPLE DATA PACKAGE

17744 CHY 11 (20 CEPT TAP IN 895 and and


960

EPA SAMPLE NO. EPA SAMPLE NO SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET CHY18 CHY18DL Lab Name: COMPUCHEM.RTP Contract: 68D10083 Lab Code: COMPU Case No.: <u>17744</u> SAS No.: 6579HQ SDG No.: CHY11 OG No.: CHY11 Lab Sample ID: 477489 Matrix: (soil/water) SOIL): <u>477489</u> Sample wt/vol: 30.4 (g/mL) G Lab File ID: GR077489C21 GDJ77489A21 LOW Level: (low/med) Date Received: 01/29/92 01/29/92 % Moisture: 28 decanted: (Y/N) N Date Extracted: 02/04/92 ed: 02/04/92 Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/10/92 02/12/92 Injection Volume: _ 2.0(uL) Dilution Factor: _ or: 2.0 GPC Cleanup: (Y/N) <u>Y</u>___ pH: <u>6.1</u> CONCENTRATION UNITS: ITS: COMPOUND CAS NO. (ug/L or ug/Kg) UG/KG Q Q JG/KG 51-28-5----2,4-Dinitrophenol 1100 IJ 2200 TT 100-02-7----4-Nitrophenol 1100 U 2200 U 132-64-9-----Dibenzofuran 450 Ū 900 U jį 121-14-2----2,4-Dinitrotoluene Ħ 450 900 TT 84-66-2----Diethylphthalate 450 U 390 DJ(Ü 7005-72-3----4-Chlorophenyl-phenylether 450 Ħ 900 86-73-7----Fluorene ıΤ 66 92 100-01-6-----4-Nitroaniline 1100 ŤŤ U 2200 534-52-1----4,6-Dinitro-2-Methylphenol U 1100 2200 U 86-30-6----N-Nitrosodiphenylamine (1) U 450 900 11 101-55-3----4-Bromophenyl-phenylether_ 450 U 900 U 118-74-1-----Hexachlorobenzene 450 U 900 U 87-86-5-----Pentachlorophenol U 1100 2200 Ħ 85-01-8-----Phenanthrene 1200 1400 120-12-7-----Anthracene 140 240 DJ 86-74-8-----Carbazole 180 260 DJ 4.0 84-74-2-----Di-n-Butylphthalate 450 TT 900 U 206-44-0----Fluoranthene 3700 E 3900 ח 129-00-0-----Pyrene 2700 3300 85-68-7-----Butylbenzylphthalate 450 ΤÏ 900 U 91-94-1----3,3 -Dichlorobenzidine 450 U 900 Ħ 56-55-3----Benzo(a)Anthracene_ 1700 1700 218-01-9-----Chrysene 1600 2100 D 117-81-7-----bis(2-Ethylhexyl)Phthalate 450 U 900 U 117-84-0-----Di-n-Octyl Phthalate П 450 900 4100<u>4600</u> 205-99-2----Benzo(b) Fluoranthene -4400 207-08-9----Benzo(k)Fluoranthene 450-4000 auri 4400 50-32-8-----Benzo(a) Pyrene 1200 1900 193-39-5----Indeno(1,2,3-cd)Pyrene 980 1700 D 53-70-3-----Dibenz(a,h)Anthracene 350 7.3 590 D 191-24-2----Benzo(g,h,i)Perylene 950 1800 (1) - Cannot be separated from Diphenylamine

FORM I SV-2 TRPH SUM VYC GCCF

3/90

896


```
431 FLUORANTHENE (G4#10) <206-44-0>
55
56
    *459 D12-CHRYSENE (IS#5)
                                                                                       **** U. ....
57
    445 PYRENE (Q5#3) <129-00-0>
    415 BUTYLBENZYL PHTHALATE (Q5#4) <85-68-7>
58
    423 3,3'-DICHLORDBENZIDINE (G5#5) <91-94-1>
59
    405 BENZO(A)ANTHRACENE (Q5#6) <56-55-3>
60
61
    413 BIS(2-ETHYLHEXYL) PHTHALATE (Q5#7) <117-81-7>
62
    418 CHRYSENE (Q5#8) <218-01-9>
63
    *497 D12-PERYLENE (IS#6)
64
    429 DI-N-OCTYL PHTHALATE (Q6#2) <117-84-0>
65
     407 BENZO(B)FLUORANTHENE (Q6#3) <205-99-2>
    409 BENZO(K)FLUORANTHENE (Q6#4) <207-08-9>
66
    406 BENZO(A)PYRENE (G6#5) <50-32-8>
67
    437 INDENO(1,2,3-C,D)PYRENE (Q6#6) <193-39-5>
88
69
     419 DIBENZO(A,H)ANTHRACENE (G6#7) <53-70-3>
     408 BENZO(G.H.I)PERYLENE (G6#8) <191-24-2>
70
     #619 2-FLUOROPHENOL (SS#1)
71
    #612 D5-PHENOL (SS#2)
72
    #634 2-CHLOROPHENOL-D4 (98#3)
73
74
     #570 1,2-DICHLOROBENZENE-D4 (SS#4)
     #447 D5-NITROBENZENE (SS#5)
75
76
     #448 2-FLUOROBIPHENYL (SS#6)
77
     #628 2,4,6-TRIBROMOPHENOL (SS#7)
/8
     #496 D14-TERPHENYL (SS#8)
     m/z
                         Ref
                                RRT
No
          Scan
                  Time
                                      Meth
                                               Area(Hght)
                                                                             %Tot
                                                             Amount
                                                                              5. 07 415
51
     178
          1413 11:38
                         45
                              1.003
                                      A BV
                                                             26, 919 NG
                                               219332.
          1450 11:56
1422 11:43
                         45
                                                                             0.7145
     167
                              1.029
                                      A BB
                                                              3. 786 NG
52
                                                17400.
     178
                                      A VV
                                                                             0. 97 465
53
                              1.009
                                                36232.
                                                              5, 151 NG
    NOT FOUND
54
          1614 13:17
                                                                             8. 84 465
                         45
                                      A BV
55
     202
                              1.145
                                               284737.
                                                             46, 929 NG
         (1857) 15: 18
                              1.000
                                      A BB
56
     240
                         56
                                                96780.
                                                             20,000 NG
                                                                             3. 77
                                                                             4. 34 465
          1652 -13:36
                              0.890
                                      A BB
57
     202
                         56
                                               228605.
                                                             23, 024 NG
    NOT FOUND
58
    NOT FOUND
59
                              0. 999
                         56
     228
          1856 15:17
                                      A BV
60
                                                87168.
                                                             15.823 NC
                                                                             2. 98 US
     NOT FOUND
61
          1862 15:20
                         56
                              1.003
                                      A VV
62
     528
                                                91120.
                                                             17, 637 NC
                                                                              3. 32 4₹5
                                                                                      156
          (2130)
                                      A BV
                17: 32
                              1.000
63
     264
                         63
                                                70740.
                                                             20,000 NG
                                                                             3.77
                                           109,000
    NOT FOUND
54
                                                             246 NC
.5/€ 252
          2048
                 16: 52
                         63
                              0.962
                                      A BV-1866132766. 14.6434-637 NG
                                                                              6. 53 485
                                                              x86 = 2100 vylky
                                                                                 1044.149L
SAMPLE DATA PACKAGE
                                       17744 CHY 11
          2652
                                             41616
Area (Hght)
                                                              9.67
                                                                     x86 = 8302191kg
 No b, m/z
           Scan
                   Time
                          Ref
                                 RRT
                                       Meth
                                                              Amount
                                                                              %Tot
                                                                              6. 68 4<sup>25</sup>
 66 🟂 252
          <del>-2046</del>₽
                                       A BV<del>/10461-52744.</del> AME 125: 488 NG
                  16: 52
                          63
                               0.962
 67
     252
           2118
                  17:27
                               0.994
                                                 60634.
                                                                              3. 39 445
                          63
                                       A VV
                                                              17. 993 NG
     276
           2438
                                                                              2. 36 4<sup>6</sup>5
 68
                  20:05
                          63
                               1.145
                                       A BB
                                                 43772.
                                                              12. 531 NG
           2448
                                                                              0. 87 445
     278
                  20:10
                          63
                                       A BV
 69
                               1.149
                                                 13217.
                                                               4. 627 NO
     276
           2533
                  20:52
                                       A VB
                                                                              2. 18485
 70
                          63
                               1.189
                                                 34592.
                                                              11.552 NG
 71
            492
                   4:03
      112
                               Q. 729
                                       A BB
                                                              19. 269 NG
                           1
                                                 87308.
                                                                              3. 63
      99
            625
 72
                   5:09
                           1
                               0. 926
                                       A BV
                                                133016.
                                                              24. 099 NG
                                                                              4.54
 73
      132
            643
                   5: 18
                           1
                               0.953
                                       A BB
                                                 71104.
                                                              16, 223 NG
                                                                              3.06
 74
      152
            498
                   5: 45
                                       A BB
                           1
                               1.034
                                                 52036.
                                                                              3.04
                                                              16. 118 NG
            760
                          13
 75
      82
                                       A BB
                   6: 16
                               0.871
                                                108228.
                                                              19. 237 NG
                                                                              3. 62
 76
      172
           1050
                   8:39
                          26
                               0.904
                                       A BB
                                                140344.
                                                              17.799 NG
                                                                              3. 35
 77
      330
           1273
                  10:39
                          26
                                       A BB
                               1.114
                                                  7336.
                                                               7. 955 NG
                                                                              1.50
     244
                          56
 78
           1678
                  13:49
                               0.904
                                       A BB
                                                 95012.
                                                              16. 539 NG
                                                                              3. 12
     Ret(L) Ratio RRT(L) Ratio
                                                            R. Fac R. Fac(L) Ratio
```

Amnt

3.79

26. 92

0.10

1.03

1.00 10.000

1.000

1.00

Amnt(L)

25.00

25.00

1. 230

0.098

1.142

0. 644

0.15

No

51

52

11:41

11:59

EPA SAMPLE NO EPA SAMPLE NO. SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET CHY20DL CHY20 Lab Name: COMPUCHEM.RTP Contract: 68D10083 SDG No.: CHY11 Case No.: 17744 SDG No.: CHY11 Lab Code: COMPU SAS No.: 6579HO 477491 Lab Sample ID: Matrix: (soil/water) SQIL 477491 GDJ77491A21 30.5 (g/mL) G Lab File ID: GRD77491C21 Sample wt/vol: 01/29/92 ad: Level: (low/med) LOW Date Received: 01/29/92 ted: 02/04/92 <u>35</u> decanted: (Y/N) N Date Extracted: 02/04/92 ed: 02/13/92 Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/11/92 30.0 Injection Volume: __ Dilution Factor: ctor: 2.0(uL) 15.0 GPC Cleanup: (Y/N) Y pH: 6.7 NITS: CONCENTRATION UNITS: UG/KG Q COMPOUND CAS NO. (ug/L or ug/Kg) UG/KG Q 36000 U 51-28-5----2,4-Dinitrophenol 18000 IL. IJ 36000 IJ 100-02-7----4-Nitrophenol 18000 U 3100 DJ 132-64-9-----Dibenzofuran 2900 T5000 121-14-2----2, 4-Dinitrotoluene 7500 13 3000 DZ() 84-66-2----Diethylphthalate 7500 15000 7005-72-3----4-Chlorophenyl-phenylether 7500 Ü Ŋ 4900 86-73-7----Fluorene 4100 .T 3**6**000 σ 100-01-6----4-Nitroaniline 18000 Ū 36000 ช 534-52-1-----4,6-Dinitro-2-Methylphenol 18000 U 15000 U 86-30-6----N-Nitrosodiphenylamine (1) 7500 U 15000 U 101-55-3----4-Bromophenyl-phenylether 7500 U 15000 U 118-74-1-----Hexachlorobenzene 7500 Ų 36000 87-86-5----Pentachlorophenol Ħ 18000 U 52000 D 85-01-8-----Phenanthrene 75000 **T3000** עם 120-12-7-----Anthracene 14000 7900 עד 86-74-8-----Carbazole 11000 15000 Π 84-74-2-----Di-n-Butylphthalate 7500 72000 a 206-44-0----Fluoranthena 10000 54000 ħ 129-00-0-----Pyrene 51000 15000 85-68-7-----Butylbenzylphthalate <u>7500</u> 15000 IJ 91-94-1-----3,3'-Dichlorobenzidine 7500 tt 29000 D 56-55-3----Benzo(a) Anthracene 33000 27000 ס 218-01-9-----Chrysene 32000 DJS 2600 117-81-7-----bis(2-Ethylhexyl) Phthalate 1600 117-84-0-----Di-n-Octyl Phthalate 15000 7500 36,000.45000 9700.45000 4600-65000 D¥ 205-99-2----Benzo(b) Fluoranthene DX-3 207-08-9----Benzo(k) Fluoranthene CV-65000 24000 D 50-32-8-----Benzo(a) Pyrene 30000 15000 D 193-39-5----Indeno(1,2,3-cd)Pyrene 11000 6000 12 53-70-3-----Dibenz(a,h)Anthracene 7.1154 5300 13000 DJ 191-24-2----Benzo(g,h,i)Perylene 7600 (1) - Cannot be separated from Diphenylamine

> FORM I SV-2 survisite receneras/90 5) milor 17744 CHY 11 1109

EPA SAMPLE NO. EPA SAMPLE NO. : ORGANICS ANALYSIS DATA SHEET CHY20 CHY20DL 'P____ Contract: 68D10083 SDG No.: CHY11 ase No.: <u>17744</u> SAS No.: <u>6579HO</u> 5DG No.: CHY11 OIL Lab Sample ID: 477491 ID: 477491 _ 30.5 (g/mL) G___ Lab File ID: GRD77491C21 GDJ77491A21 **₩O**⊔ Date Received: 01/29/92 ed: 01/29/92 Date Extracted: 02/04/92 .ecanted: (Y/N) N ted: <u>02/04/92</u> Volume: 500.0 (uL) Date Analyzed: 02/11/92 ed: 02/13/92 Dilution Factor: _____15.0 2.0(uL) ctor: ____30.0 pH: <u>6.7</u> CONCENTRATION UNITS: NITS: COMPOUND (ug/L or ug/Kg) UG/KG Q UG/KG Q 7500 -Phenol 15000 U -bis(2-Chloroethyl)Ether___ 7500 U 15000 U 7500 U --2-Chlorophenol____ U 15000 -1,3-Dichlorobenzene 7500 U 15000 U -1,4-Dichlorobenzene____ 7500 U 15000 U --1,2-Dichlorobenzene 7500 U 15000 U U --2-Methylphenol 7500 15000 U -2,2'-0xybis(1-Chloropropane)_ 7500 U 15000 U -4-Methylphenol_ U 7500 15000 U --N-Nitroso-Di-n-Propylamine 7500 U 15000 U 7500 U -Hexachloroethane 15000 U Vitrobenzene 7500 U 15000 U 7500 U .sophorone 15000 U --2-Nitrophenol 7500 U 15000 U -2,4-Dimethylphenol___ 7500 U U 15000 -bis(2-Chloroethoxy)Methane___ 7500 U Ħ 15000 --2,4-Dichlorophenol 7500 U 正し 15000 U --1,2,4-Trichlorobenzene U 7500 15000 U J 🗸 -Naphthalene 2500 3.33 2700 DJ -4-Chloroaniline 7500 U 15000 --Hexachlorobutadiene 7500 U U 15000 -4-Chloro-3-Methylphenol____ 7500 U 15000 U 790 J -2-Methylnaphthalene 15000 U --Hexachlorocyclopentadiene 7500 Ū 15000 U --2,4,6-Trichlorophenol 7500 15000 U -2,4,5-Trichlorophenol____ 18000 U 36000 U -2-Chloronaphthalene 7500 U U 15000 --2-Nitroaniline 18000 U U 36000 -Dimethyl Phthalate 7500 U U 15000 -Acenaphthylene 7500 U

7500

9000

18000

U

U

FORM I SV-1

--2,6-Dinitrotoluene ____

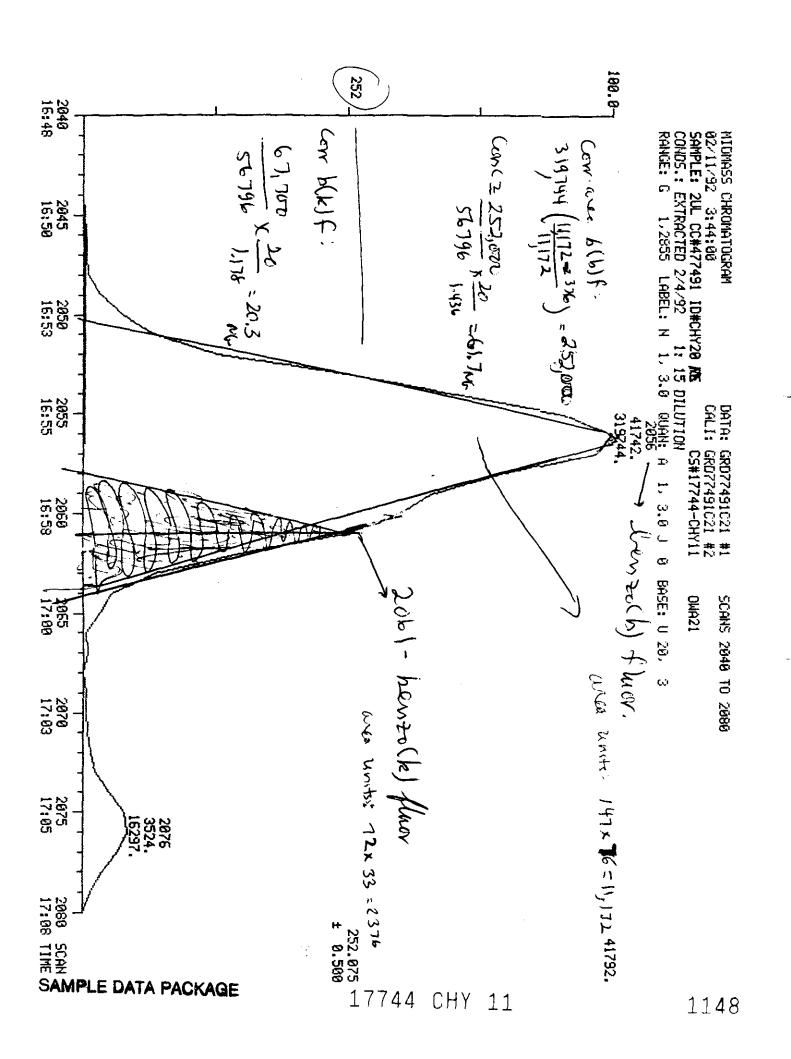
--3-Nitroaniline____

-Acenaphthene

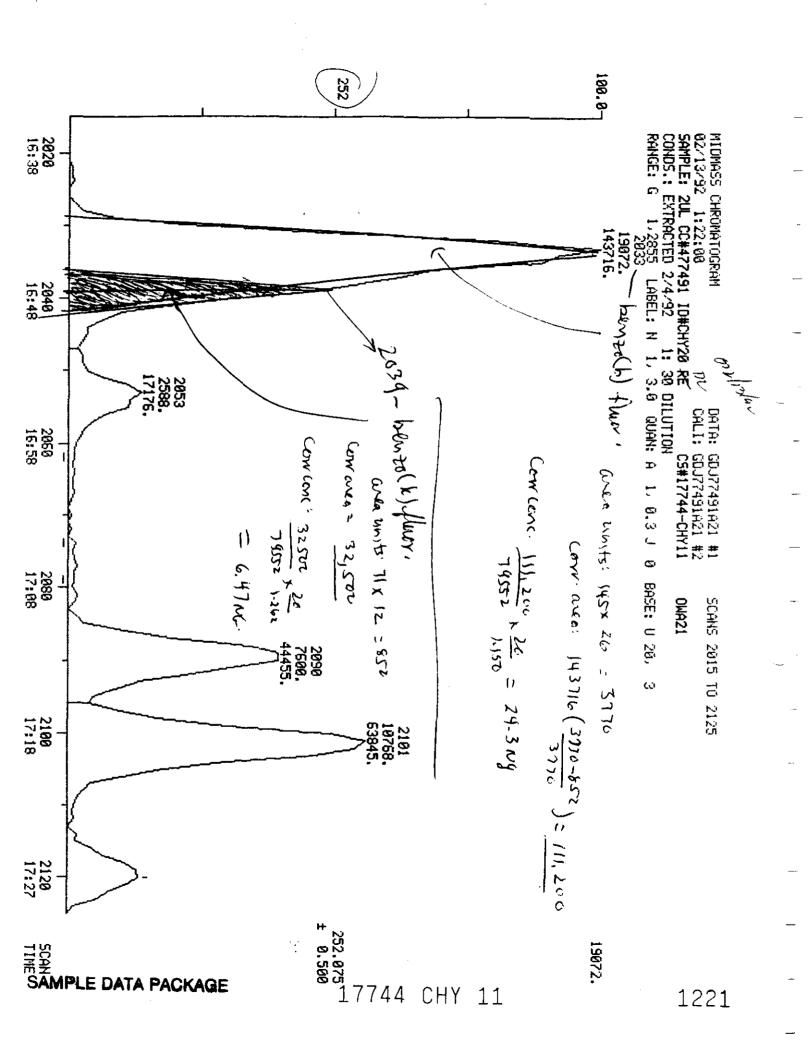
3/90

15000

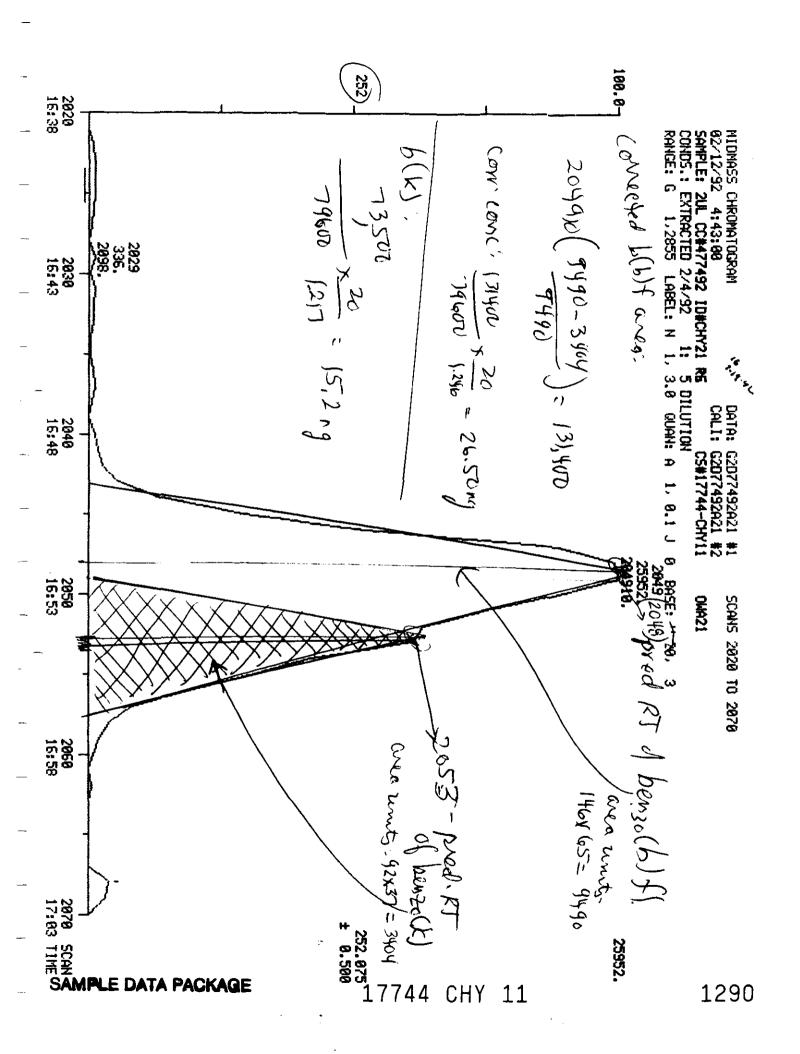
15000


36000

10000


U

U


U


```
*459 D12-CHRYSENE (IS#5)
56
57
     445 PYRENE (Q5#3) <129-00-0>
     415 BUTYLBENZYL PHTHALATE (Q5#4) <85-68-7>
58
     423 3,3'-DICHLOROBENZIDINE (Q5#5) <91-94-1>
59
     405 BENZO(A)ANTHRACENE (Q5#6) <56-55-3>
60
     413 BIS(2-ETHYLHEXYL) PHTHALATE (Q5#7) <117-81-7>
61
     418 CHRYSENE (Q5#8) <218-01-9>
62
     *497 D12-PERYLENE (IS#6)
63
64
     429 DI-N-OCTYL PHTHALATE (Q6#2) <117-84-0>
     407 BENZO(B)FLUORANTHENE (G6#3) <205-99-2>
65
     409 BENZO(K)FLUORANTHENE (Q6#4) <207-08-9>
66
     406 BENZO(A)PYRENE (G6#5) <50-32-8>
67
                                                                (HY20,
     437 INDENO(1,2,3-C,D)PYRENE (Q6#6) <193-39-5>
68
     419 DIBENZO(A, H) ANTHRACENE (G6#7) <53-70-3>
69
     408 BENZO(G, H, I)PERYLENE (Q6#8) <191-24-2>
 70
     #619 2-FLUOROPHENOL (SS#1)
71
     #612 D5-PHENOL (5S#2)
72
     #634 2-CHLOROPHENOL-D4 (SS#3)
 73
     #570 1,2-DICHLORDBENZENE-D4 (SS#4)
 74
 75
     #447 D5-NITROBENZENE (SS#5)
 76
     #448 2-FLUOROBIPHENYL (SS#6)
 77
     #628 2,4,6-TRIBROMOPHENOL (SS#7)
 78
     #496 D14-TERPHENYL (SS#8)
                   Time
                          Ref
                                 RRT
                                       Meth
                                                Area(Hght)
No
     m/z
           Scan
                                                              Amount
                                                                              %Tot
                                                                             11. 72∤<sup>E</sup>
           1420 11:42
     178
                          45
                               1.004
                                       A BV
                                                733607.
                                                              99. 416 NG
 51
           1455
                  11:59
                          45
                               1.028
                                       A BV
                                                 53628.
                                                              14, 904 NG
                                                                              1.76
 52
     167
           1428 - 11:46
                          45
                               1.009
                                       A VV
                                                108429.
                                                              18, 923 NG
                                                                              2. 23
     178
 53
     NOT FOUND
 54
                                       A BB
 55
     202
           1621
                  13:21
                          45
                               1.146
                                                912634.
                                                             145, 471 NG
                                                                             17. 15) &
                          56
                                                                              2. 36<sup>1</sup>
                                                                                       1.5
                               1.000
                                       A BV
                                                155834.
 56
     240
           <u>1864</u> 15:21
                                                              20, 000 NG
                  13:40
                          56
                               0.891
                                       A BB
                                                741494.
                                                                              7. 95 🗸
 57
     202
           1660
                                                              67, 456 NG
     NOT FOUND
 58
 59
     NOT FOUND
                                       A BV
                               0.999
                                                372047.
     228
           1863 \( \tau 15: 21 \)
                          56
                                                              43, 356 NG
                                                                              5. 117
60
                               1.001
                                       A BB
                                                                              0. 25<sub>\(\sigma\)</sub>
     149
           1865
                  15:21
                          56
                                                 18959.
                                                               2.094 NG
 61
                                       A VV
     228
           1869 √ 15: 23
                          56
                               1.003
                                                274026.
                                                              42, 252 NG
                                                                              4. 984
62
                                                                                       156
                          63
                               1.000
                                       A BV
                                                 56796.
                                                              20, 000 NG
                                                                              2. 36 /
     264
           <u>2139</u> 17: 37
 63
     NOT FOUND
64
                                       A BV 39 202987. 87
                               0.961
 55
     252
           2056
                  16: 56
                          63
                                                                                         021
                                              254,000
                                                                 46,000 agshy 1116
SAMPLE DATA PACKAGE
                                       17744 CHY
                                      Meth 67,700
A BV 1977/2000 (Hight)
          2061
                                                            20,3 =15,200 5/kg
         Scan
No
     m/z
                         Ref
                  Time
                                RRT
                                                             Amount
                                                                              %Tot
                                              332787. 91 07 92 580 NG
66
     252
          2076
                 16:56
                         63
                              0.961
                                      A BV
                                                                          Ø 11.74)
67
     252
          2127
                 17:31
                              0.994
                         63
                                      A VV
                                               107344.
                                                             40. 150 NG
                                                                             4. 734
     276
          2451
98
                 20:11
                         63
                              1.146
                                      A BB
                                                37493.
                                                             14.028 NG
                                                                              1.65
69
     278
          2457
                 20:14
                         63
                              1.149
                                      A BB
                                                17340.
                                                              7.013 NG
                                                                             0.834
70
     276
          2544
                 20:57
                         63
                              1.189
                                      A BB
                                                25652.
                                                                                        12/13/42
                                                              9. 986 NG
                                                                              1.185
71
     112
           499
                  4:07
                          1
                              0.732
                                      A BV
                                                11704.
                                                              3. 325 NG
                                                                             0.39
      99
72
           632
                  5:12
                              0. 927
                          1
                                      A BV
                                                 9492.
                                                              2. 260 NG
                                                                             0.27
73
     132
           650
                  5:21
                          1
                              0. 953
                                      A BB
                                                 7612.
                                                              2. 227 NG
                                                                             0.26
74
     152
           705
                  5:48
                          1
                              1.034
                                      A BB
                                                 4540.
                                                              1,818 NG
                                                                             0.21
75
      82
           767
                  6:19
                         13
                              0.873
                                      A BV
                                                 6876.
                                                              1.487 NG
                                                                             0.18
76
     172
          1056
                  8:42
                         26
                              0.905
                                      A BB
                                                12948,
                                                              1. 782 NG
                                                                             0.23
77
    330
          1299
                 10:42
                         26
                              1.113
                                      A BB
                                                 2116.
                                                              1.366 NG
                                                                             0.16
78
    244
          1684
                 13: 52
                         56
                              0.903
                                      A BB
                                                14052.
                                                              2.099 NG
                                                                             0.25
No
    Ret(L) Ratio RRT(L) Ratio
                                       Amn t
                                               Amnt(L)
                                                           R. Fac R. Fac(L) Ratio
51
    11:42
            1.00 10.000
                           0.10
                                      99.42
                                                 25.00
                                                           4. 449
                                                                    1.119
                                                                             3. 98
52
    12:01
            1.00
                   1.000
                           1.03
                                      14. 90
                                                 25.00
                                                           0. 325
                                                                    0.546
                                                                             0.60
    11:47
            1.00 10.000
                           0.10
                                      18,92
                                                 コュ つく
                                                           A 450
                                                                    0.040
```

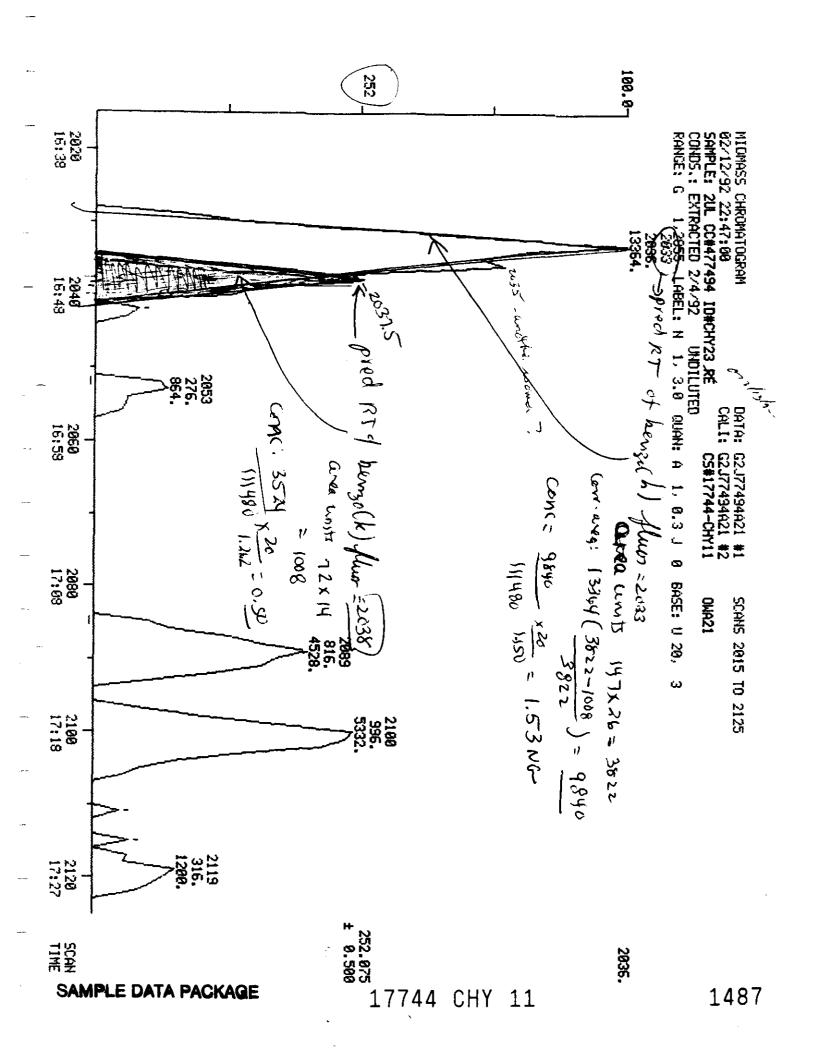


```
60
     405 BENZO(A)ANTHRACENE (Q5#6) <56-55-3>
61
     413 BIS(2-ETHYLHEXYL) PHTHALATE (Q5#7) <117-81-7>
62
     418 CHRYSENE (Q5#8) <218-01-9>
63
     *497 D12-PERYLENE (IS#6)
     429 DI-N-OCTYL PHTHALATE (Q6#2) <117-84-0>
64
     407 BENZO(B)FLUORANTHENE (G6#3) <205-99-2>
65
66
     409 BENZO(K)FLUORANTHENE (Q6#4) <207-08-9>
67
     406 BENID(A)PYRENE (G6#5) <50-32-8>
     437 INDENO(1, 2, 3-C, D) PYRENE (Q6#6) <193-39-5>
68
69
     419 DIBENZO(A,H)ANTHRACENE (Q6#7) <53-70-3>
70
     408 BENZO(G, H, I)PERYLENE (Q6#8) <191-24-2>
                                                              C HY 20 D
71
     #619 2-FLUOROPHENOL (SS#1)
72
     #612 D5-PHENOL (SS#2)
73
     #634 2-CHLOROPHENOL-D4 (SS#3)
74
     #570 1,2-DICHLOROBENZENE-D4 (SS#4)
75
     #447 D5-NITROBENZENE (SS#5)
     #448 2-FLUOROBIPHENYL (SS#6)
76
     #628 2,4,6-TRIBROMOPHENOL (SS#7)
77
     #496 D14-TERPHENYL (SS#8)
78
Nο
     m/z
          Scan
                  Time
                         Ref
                                RRT
                                     Meth
                                              Area(Hght)
                                                           Amount
                                                                           %Tot
                                                                                  D
                                     A BV
51
     178
          1405
                 11:34
                         45
                             1.003
                                              469228.
                                                                           8. 24 Y
                                                           34.065 NG
                                                                           1.26/YP
52
     167
          1442
                 11:52
                         45
                             1.029
                                     A BB
                                               51260.
                                                             5. 223 NG
53
     178
          1413
                 11:38
                         45
                             1.009
                                     A VB
                                              106808.
                                                            8. 912 NG
                                                                           2. 16 ý
54
     NOT FOUND
                                                                          11. 50 y P
                         45
                                     A BB
55
     202
          1605
                 13:13
                             1.146
                                              477180.
                                                           47. 539 NG
          1848
                 15:13
                                     A BB
                                              105528.
56
     240
                         56
                             1.000
                                                                           4.84/
                                                           20,000 NG
          1643
                 13:32
                                     A BB
57
     202
                         56
                             0.889
                                              370408.
                                                           35, 704 NG
                                                                           8. 63 y
                                                                           0.29~
          1753
                 14:26
58
     149
                         56
                             0.949
                                     A BB
                                                6680.
                                                            1, 211 NG
59
     NOT FOUND
                                     A BV
                                                                           4. 66)
40
     228
          1846
                 15:12
                         56
                             0.999
                                              116968.
                                                           19, 256 NG
                                                                           0. 42 y D
     149
          1851
                         56
61
                 15:15
                             1.002
                                     A BB
                                               14408.
                                                             1, 719 NG
          1852
                                     A VV
62
     228
                 15:15
                         56
                             1.002
                                              105604.
                                                                           4. 26 y P
                                                           17, 615 NG
63
     264
          2113
                 17:24
                         63
                             1.000
                                     A BB
                                              ~79552.)
                                                                           4.84 156
                                                           20, 000 NG
64
     NOT FOUND
                                     変 7.55 ソリ
                 16:45
65
     252
          2033
                         63
                             0. 762
                                                         24.3 x1500= 36,5000 1/kg /
                                           111,200
SAMPLE DATA PACKAGE
                                     17744 CHY
                                          32500
                                                           6,47 x1500 =970003/kg
         2039
Scan
                               RRT
                                     Meth
                                              Area(Hght)
                  Time
                        Ref
                                                           Amount
No
    m/z
                                     A BV / THEGES. 77
         _2003
                 16:45
                             0. 962
                                                           28-450 NG
                                                                           6. 887
    252
                        63
66
                                                                                  D
                                                       15 61414-362 NG
                 17:18
                                                                           3. 96
          2101
                                     A VV 63 145 66900.
67
    252
                        63
                             0. 994
                                                                                 17
                                                                           2. 37 夕
          2411
                                     A BB
                                               43812.
                                                            9.793 NG
                 19:51
                        63
                             1.141
68
    276
    278
                 19:54
                                     A VB
                                               14424.
                                                            3. 967 NG
                                                                           0. 96 /
          2417
                        63
                             1.144
69
                                                                           2. Q1'y
          2501
                 20:36
                        63
                                     A BB
                                               33040.
                                                            8.308 NG
70
    276
                             1.184
           488
                  4:01
                             0.728
                                     A BB
                                                8272.
                                                            1.399 NG
                                                                           0.34
71
     112
72
                                     A BV
      99
           622
                  5:07
                          1
                             0.928
                                                8324.
                                                            1, 124 NG
                                                                           0.27
73
           639
                  5:16
                             0.954
                                     A BB
                                                7112.
                                                            1.026 NG
                                                                           0.25
     132
                          1
74
    NOT FOUND
                                                                           0.29
75
     82
           757
                        13
                             0.873
                                     A BB
                                                9160.
                                                            1.189 NG
                  6:14
          1044
                                     A BB
                                                            1.089 NG
                                                                           0.26
     172
                  8:36
                        26
                             0.905
                                               13160.
76
                                                                           0.28
77
     330
          1286
                 10:35
                        26
                             1.115
                                     A BB
                                                2380.
                                                            1, 142 NG
                                                9896.
                                                            1.451 NG
                                                                           0.35
78
    244
          1670
                 13:45
                        56
                             0.904
                                     A BB
                                                         R. Fac R. Fac(L) Ratio
No
    Ret(L) Ratio RRT(L) Ratio
                                      Amnt
                                              Amnt(L)
    11:35
                                                         1.559
                                                                  1.144
                                                                           1.36
51
            1.00 10.000
                           0.10
                                     34.06
                                                25.00
                                      5.22
                                                25.00
                                                         0.170
                                                                  0.815
                                                                           0.21
52
     11:53
            1.00
                  1,000
                           1.03
                                                                  0.996
                                      8. 91
                                                25.00
                                                         0.355
                                                                           0.36
53
     11:39
            1.00 10.000
                           0.10
54
     12:22
                  10.000
                                     47.54
                                                25.00
                                                         1.586
                                                                  0.834
                                                                           1.90
55
     13:14
            1.00 10.000
                           0.11
                                                                  1.000
                                                                           1.00
     15:14
            1.00 10.000
                           0.10
                                     20.00
                                                20.00
                                                         1.000
56
                                     95 PA
                                                                  1 766
            1 00 10 000
                           0.00
     17-77
```



```
407 BENZO(B)FLUORANTHENE (Q6#3) <205-99-2>
65
    409 BENZO(K)FLUORANTHENE (Q6#4) <207-08-9>
66
67
    406 BENZO(A)PYRENE (06#5) <50-32-8>
    437 INDENU(1,2,3-C,D)PYRENE (G6#6) <193-39-5>
68
69
    419 DIBENZO(A,H)ANTHRACENE (G6#7) <53-70-3>
70
    408 BENZO(G,H,I)PERYLENE (G6#8) <191-24-2>
                                                            CH451
    #619 2-FLUOROPHENOL (SS#1)
71
72
    #612 D5-PHENOL (SS#2)
73
    #634 2-CHLOROPHENOL-D4 (SS#3)
74
    #570 1,2-DICHLOROBENZENE-D4 (SS#4)
75
    #447 D5-NITROBENZENE (SS#5)
76
    #448 2-FLUOROBIPHENYL (SS#6)
77
    #628 2.4.6-TRIBROMOPHENOL (SS#7)
78
    #496 D14-TERPHENYL (SS#8)
No
    m/z
          Scan
                  Time
                        Ref
                               RRT
                                     Meth
                                              Area(Hght)
                                                           Amount
                                                                           %Tot
          1414 / 11:39
                                     A VV
                                                                           3.4040
51
    178
                        45
                             1.003
                                              107240.
                                                           13. 697 NG
                                     A BB
                                                                           0.7040
52
    167
          1451
                11:57
                        45
                             1.029
                                               12436.
                                                            2.816 NG
          1423 U 11:43
53
    178
                        45
                             1.009
                                     A VV
                                               24560.
                                                            3. 634 NG
                                                                           0. 9045
54
    NOT FOUND
                                     A BB
55
    202
          1615 ~ 13: 18
                        45
                             1.145
                                              204028.
                                                           34, 993 NG
                                                                           8.6945
         (1858) 15: 18
56
    240
                        56
                             1.000
                                     A VB
                                              115832.
                                                           20,000 NG
                                                                           4. 97
                                                                           3. 44465
          1653 /13:37
57
    202
                        56
                             0.890
                                     A VB
                                              164717.
                                                           13. 861 NC
58
    149
          1763
               14:31
                             0.949
                                     A BB
                                                9848.
                                                            1.854 NG
                                                                           0. 46 yes
59
    NOT FOUND
60
    228
          1857 V15:18
                        56
                             0.999
                                     A BV
                                              116709.
                                                           17. 700 NG
                                                                           4.40 485
    NOT FOUND
61
62
    228
          1863 15:21
                        56
                             1.003
                                     A VV
                                               92921.
                                                                           3. 73 465
                                                           15.028 NG
                             1.000
                                     A VV
    264
          2132) 17:33
                        63
63
                                               79600`
                                                           20. 000 NG
                                                                           4. 97
                                                                                  156
    NOT FOUND
                                                           26.50
64
                                                                          10.739年5 从
                                     A BV 20144 214 207 41 394
85<u>%</u> 252
          2049
                             0. 961
                 16: 52
                                                           TORRES NO
             (8)
                                                             x250-6600 cg/ki
                                           13,400
SAMPLE DATA PACKAGE
                                     17744 CHY
                                                                              1266 V
                                                      11
                                                           15.2 ng x250= 3900 m/kg
                                          73500
           20.5^{2}
No Cam/z
          Scan
                                     Meth
                         Ref
                                RRT
                  Time
                                              Area(Hght)
                                                                           %Tot
                                                            Amount
                                                                           10. 99 yes hik
                                     A BUSEFIC 14327 41.77044 241 NG
66 4 252
         16: 52
                         63
                             0.961
                                                                            6. 79 485

     252
          2119
                 17:27
                         63
                             0.994
                                     A VV
                                              103751.
                                                            27, 361 NG
                                                                            3. 76 465
68
     276
           2438
                 20:05
                         63
                             1.144
                                     A BB
                                               59466.
                                                            15, 128 NG
           2445
                                                                            1.684の
69
     278
                 20:08
                         63
                              1.147
                                     A*BV
                                               21735.
                                                             6.763 NG
                   2537
70
     NOT-FOUND 296
                                               47118
                                                            13, 994
71
     112
            491
                  4:03
                          1
                             0.726
                                     A BV
                                               33444.
                                                             6. 921 NG
                                                                            1.72
72
      99
           626
                  5:09
                          1
                             0. 926
                                     A BV
                                               37364.
                                                                            1.58
                                                             6.348 NG
73
     132
            643
                  5: 18
                             0.951
                                     A BB
                          1
                                               23572.
                                                             5.043 NG
                                                                            1.25
74
     152
            699
                  5:45
                                     A BB
                          1
                              1.034
                                               14048.
                                                             4.080 NG
                                                                            1.01
75
      82
           761
                  6:16
                             0.871
                                     A BV
                         13
                                               24972.
                                                             4, 198 NG
                                                                            1.04
     172
76
           1051
                  8:37
                             0.904
                         26
                                     A BB
                                               34916.
                                                             4. 451 NG
                                                                            1.11
77
     330
           1273
                 10:39
                         26
                                     A BB
                              1.113
                                                5480.
                                                             5. 972 NG
                                                                            1.48
     244
78
           1679
                 13:50
                         56
                             0.904
                                     A VB
                                               27628.
                                                                            1.00
                                                             4.018 NG
     Ret(L) Ratio RRT(L) Ratio
No
                                      Amnt
                                              Amnt(L)
                                                         R. Fac R. Fac(L)
                                                                          Ratio
     11:41
             1.00 10.000
                                     13.70
51
                           0.10
                                                25.00
                                                         0. 626
                                                                   1.142
                                                                            0.55
52
     11:59
             1.00
                  1,000
                           1.03
                                      2.82
                                                25.00
                                                                   0. 644
                                                         0.073
                                                                            0.11
     11:45
             1.00 10.000
 53
                           0.10
                                      3. 63
                                                25.00
                                                                   0. 986
                                                         0.143
                                                                            0.15
     12:28
 54
                   10.000
                                     34. 99
 55
     13:19
             1.00 10.000
                           0.11
                                                25, 00
                                                          1.190
                                                                   0.850
                                                                            1.40
                           0.10
     15:20
             1.00 10.000
                                     20.00
 56
                                                20.00
                                                                   1.000
                                                                            1.00
                                                          1.000
 57
     13:38
             1.00 10.000
                           0.09
                                      13.86
                                                 25.00
                                                          1.138
                                                                   2.052
                                                                            0.55
     14:32
 58
             1.00 10 000
                           0.09
                                      1.85
                                                25.00
                                                         0.068
                                                                   0.917
                                                                            0.07
                  20.000
 59
     15:17
                                     17.70
     15:19
             1.00 10.000
                           0.10
                                                25.00
                                                                            0.71
 60
                                                         0.804
                                                                   1.138
     15:21
                   10.000
61
                                                          ባ ራሊጋ
                                                                   1 040
                                                                            2 10
62
     15:22
             1.00 10.000
                           0.10
                                     15, 03
                                                25 00
```


1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET	EPA SAMPLE NO.	EPA SAMPLE
Lab Name: COMPUCHEM.RTP Contract: 68D1008	CHY22	CHY22RE
Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO		3 No.: <u>CHY11</u>
Matrix: (scil/water) SOIL Lab Samp	ple ID: 477493	: <u>477493</u>
Sample wt/vol: 30.5 (g/mL) G Lab File	# ID: <u>GRJ77493A21</u>	GRJ77493A05
	ceived: 01/29/92	: 01/29/92
% Moisture: 20 decanted: (Y/N) N Date Ext	tracted: <u>02/04/92</u>	i: <u>02/14/92</u>
Concentrated Extract Volume: 500.0 (uL) Date And	lyzed: <u>02/12/92</u>	: 02/24/92
Injection Volume: 2.0(uL) Dilution	Factor: 1.0	or:1.0
GPC Cleanup: (Y/N) Y pH: 6.4 CONCENTRATIO	א וואזייגי	rs:
CAS NO. COMPOUND (ug/L or ug/		<u>3∕KG</u> Q
108-95-2Phenol 111-44-4bis(2-Chloroethyl) Ether 95-57-82-Chlorophenol 541-73-11,3-Dichlorobenzene 106-46-71,4-Dichlorobenzene 95-50-11,2-Dichlorobenzene 95-48-72-Methylphenol 108-60-12,2'-Oxybis(1-Chloropropane) 106-44-5	410 U 410 U	410 U 410 U
606-20-22,6-Dinitrotoluene 99-09-23-Nitroaniline 83-32-9Acenaphthene	410 U 980 U 410 U	410 990 150 J
FORM I SV-1	3/90	3/9

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET	EPA SAMPLE NO.	EPA SAMPLE
Lab Name: COMPUCHEM.RTP Contract: 68D1	CHY22	CHY22RE
Lab Code: COMPU Case No.: 17744 SAS No.: 6579	HO SDG No.: CHY11	G No.: CHY11
Matrix: (soil/water) SOIL Lab So	ample ID: 477493	: 477493
Sample wt/vol: 30.5 (g/mL) G Lab F.	ile ID: <u>GRJ77493A21</u>	GRJ77493AC
Level: (low/med) LOW Date	Received: <u>01/29/92</u>	: 01/29/92
% Moisture: 20 decanted: (Y/N) N Date	Extracted: <u>02/04/92</u>	d: <u>02/14/92</u>
Concentrated Extract Volume: 500.0 (uL) Date	Analyzed: <u>02/12/92</u>	: 02/24/92
Injection Volume: 2.0(uL) Dilut:	ion Factor:1.0	or:1.0
	rion units: ug/kg) <u>ug/kg</u> Q	TS: <u>G/KG</u> Q
51-28-52,4-Dinitrophenol	980 U 980 U	990 U 990 U /
132-64-9Dibenzofuran	410 U	61 J
121-14-22,4-Dinitrotoluene	410 U	410 U
84-66-2Diethylphthalate_	410 U	410 U ,
7005-72-34-Chlorophenyl-phenylether	410 U	410 U /
86-73-7Fluorene 100-01-64-Nitroaniline	410 U 980 U	89 J
534-52-14,6-Dinitro-2-Methylphenol	980 U	990 U
86-30-6N-Nitrosodiphenylamine (1)	410 U	-
101-55-34-Bromophenyl-phenylether	410 U	410 U 410 U
118-74-1Hexachlorobenzene	410 U	410 U
87-86-5Pentachlorophenol	980 U	990 U /
85-01-8Phenanthrene	370 J	900
120-12-7Anthracene	55 J	150 J 🗸 /
86-74-8Carbazole	68 J	120 J /
84-74-2Di-n-Butylphthalate	410 U	410 U
206-44-0Fluoranthene 129-00-0Pyrene	1100	1500
85-68-7Butylbenzylphthalate	410 U	1300 J
91-94-13,3'-Dichlorobenzidine	410 U	410 U /
56-55-3Benzo(a)Anthracene	410	730
218-01-9Chrysene	440 /	880
117-81-7bis(2-Ethylhexyl)Phthalate	410 0 /	66 33
117-84-0Di-n-Octyl Phthalate	410 U	410 0 /
205-99-2Benzo(b) Fluoranthene	1200 X	1600
207-08-9Benzo(k) Fluoranthene	4300 X	570
50-32-8Benzo(a) Pyrene 193-39-5Indeno(1,2,3-cd) Pyrene	380 J	550
53-70-3Dibenz(a,h)Anthracene	1 450 98 J	970 180 J
191-24-2Benzo(g,h,i) Perylene	350 J	810
		310

(1) - Cannot be separated from Diphenylamine

FORM I SV-2 Survegute recener, 3/90 17744 CHY 11 Similar 1325

13


```
423 3,3'-DICHLOROBENZIDINE (Q5#5) <91-94-1>
59
    405 BENZO(A)ANTHRACENE (Q5#6) <56-55-3>
60
    413 BIS(2-ETHYLHEXYL) PHTHALATE (Q5#7) <117-81-7>
61
    418 CHRYSENE (G5#8) <218-01-9>
62
63
    *497 D12-PERYLENE (IS#6)
64
    429 DI-N-OCTYL PHTHALATE (G6#2) <117-84-0>
65
    407 BENZO(B)FLUORANTHENE (96#3) <205-99-2>
    409 BENZO(K)FLUORANTHENE (G6#4) <207-08-9>
66
    406 BENZO(A)PYRENE (Q6#5) <50-32-8>
67
    437 INDENO(1,2,3-C,D)PYRENE (Q6#6) <193-39-5>
68
                                                               (HY 23
69
    419 DIBENZO(A,H)ANTHRACENE (Q6#7) <53-70-3>
70
    408 BENZO(Q, H, I)PERYLENE (Q6#8) <191-24-2>
71
    #619 2-FLUOROPHENOL (SS#1)
72
    #612 D5-PHENOL (SS#2)
73
    #634 2-CHLOROPHENOL-D4 (SS#3)
74
    #570 1,2-DICHLOROBENZENE-D4 (SS#4)
75
    #447 D5-NITROBENZENE (SS#5)
76
    #448 2-FLUOROBIPHENYL (SS#6)
77
    #628 2,4,6-TRIBROMOPHENOL (S5#7)
    #496 D14-TERPHENYL (SS#8)
78
    m/z
          Scan
                 Time
                        Ref
                               RRT
                                    Meth
                                             Area(Hght)
No
                                                           Amount
                                                                          %Tot
                                               18000
                                                           6.579
                                                                       FAL
    NOT FOUND MUY
51
52
    NOT FOUND
                                                            0.202
                                                                                 Anl
53
    178
          1404<sup>2</sup> 11:34
                             1.003
                                          2(3~1<del>005</del>2.
                                    A BB
                                                           -1. 032 NO
                                                                          0.31
    NOT FOUND
54
                                                                          0.57
55
    202
          1604<u>13:13</u>
                        45
                            1.146
                                    A BB
                                              27708.
                                                            1.891 NG
    240 (1847) 15:13
                                    A BV
                                                                          5. 99
56
                        56
                            1.000
                                             152580.
                                                           20, 000 NG
    202
          1642 13:31
                                    A BB
57
                        56
                            0.889
                                              22528.
                                                            1, 502 NG
                                                                          O. 45 y
    NOT FOUND
58
59
    NOT FOUND
                                                                          0. 31 mi
          1851<sup>45</sup> 15: 15
                                    A VB 9460 9116.
                                                       0 879 1-038 NG
    228
                        54
                             1.002
60
    NOT FOUND
61
                            1.002
                                               -9116m
                                                                          0.32 >
    228
          1851 15:15
                                    A VB
62
                        56
                                                            1.052 NC
                                                                          5. 99
                                                                                   156
                                    A BB
                                            111480
63
    264 2113 ) 17: 24
                        63
                             1.000
                                                           20,000 NG
    NOT FOUND
                                                             1.53×42=6409/kg
64
                                                9840
                                                           2005 NO 20.62 y b(h)
                            0. 962
65
    252
         2033
                16:45
                        63
                                    A BB
                                                                                  na/13/2.
SAMPLE DATA PACKAGE
                                     17744 CHY 11
                                                                              1471
     m/z Ze38
                                                                          0. 57 N (te)
No
                  Time
                         Ref
                               RRT
                                     Meth
                                              Area (Hght)
                                                           Amount
     252 -2039-
                 16545 63
                                     A BB
                                                        44-1- 900 NG IF
                             0.762
     NOT FOUND
                                                                             KKS+ 03/13/
     NOT FOUND
68
     NOT FOUND
69
70
     NOT FOUND
                  4:01
71
     112
            487
                             0.727
                                     A BB
                                              248420.
                                                           29, 167 NG
                                                                           8.74
                          1
72
     99
           620
                  5:06
                             0.925
                                     A BV
                                              298432.
                                                           27. 974 NG
                          1
                                                                           8. 38
73
     132
           637
                  5:15
                             0. 951
                                     A BB
                          1
                                              230712.
                                                           23, 107 NG
                                                                           6.92
74
     152
           692
                  5:42
                          1
                                     A BB
                             1.033
                                              141232.
                                                           21. 316 NO
                                                                           6.39
                         13
75
     82
           754
                  6:13
                             0.871
                                     A BY
                                              256564.
                                                           23, 554 NG
                                                                           7.06
     172
          1043
                  8: 35
                         26
                             0. 705
                                     A BB
                                              377756.
                                                                           6.70
76
                                                           22. 372 NG
77
     330
          1284
                 10:34
                         26
                                     A BB
                                               74604.
                             1.114
                                                           25. 642 NG
                                                                           7.68
78
     244
          1667
                 13:45
                         56
                             0.904
                                     A BY
                                              243412.
                                                           24. 690 NG
                                                                           7, 40
     Ret(L) Ratio RRT(L) Ratio
                                      Amnt
                                              Amnt(L)
                                                         R. Fac R. Fac(L) Ratio
No
                                                                   1.144
                  10.000
51
     11:35
     11:53
52
                   1.000
             0.99 10.000
53
     11:39
                           0.10
                                      1.03
                                                25.00
                                                         0.041
                                                                  0. 996
                                                                           0.04
     12:22
54
                  10.000
55
     13:14
             1.00 10.000
                           0.11
                                      1.89
                                                25.00
                                                         0.063
                                                                  0.834
                                                                           0.08
     15:14
                           0.10
56
             1.00 10.000
                                     20.00
                                                20.00
                                                         1.000
                                                                  1.000
                                                                           1.00
     14-35
             1 00 10 000
                           0 00
57
```

```
59
      423 3,3'-DICHLOROBENZIDINE (05#5) <91-94-1>
 60
      405 BENZO(A)ANTHRACENE (Q5#6) <56-55-3>
      413 BIS(2-ETHYLHEXYL) PHTHALATE (Q5#7) <117-81-7>
 61
 62
      418 CHRYSENE (Q5#8) <218-01-9>
 63
     *497 D12-PERYLENE (IS#6)
 64
     429 DI-N-OCTYL PHTHALATE (Q6#2) <117-84-0>
 65
      407 BENZO(B)FLUORANTHENE (Q6#3) <205-99-2>
 66
      409 BENZO(K)FLUORANTHENE (G6#4) <207-08-9>
     406 BENZO(A)PYRENE (Q6#5) <50-32-8>
 67
      437 INDENO(1,2,3-C,D)PYRENE (Q6#6) <193-39-5>
 68
 69
      419 DIBENZO(A,H)ANTHRACENE (G6#7) <53-70-3>
 70
     408 BENZO(G, H, I)PERYLENE (Q6#8) <191-24-2>
 71
     #619 2-FLUOROPHENOL (SS#1)
 72
     #612 D5-PHENOL (SS#2)
 73
     #634 2-CHLOROPHENOL-D4 (SS#3)
 74
      #570 1,2-DICHLOROBENZENE-D4 (SS#4)
 75
      #447 D5-NITROBENZENE (SS#5)
      #448 2-FLUOROBIPHENYL (SS#6)
 76
 77
      #628 2,4,6~TRIBROMOPHENOL (SS#7)
      #496 D14-TERPHENYL (SS#8)
 78
 Νø
     m/z
           Scan
                   Time
                          Ref
                                 RRT
                                       Meth
                                                Area(Hght)
                                                              Amount
                                                                              %Tot
 51)
                  11:38
     178
           1413
                          45
                               1,003
                                       A BV
                                                 15848.
                                                               1. 594 NG
                                                                              0.3445
 52
     NOT FOUND
                          45
                                       A BV
 53
     178
                  11:38
                               1.003
           1413
                                                 15848.
                                                               1.847 NG
                                                                              0. 39 NO
 54
     NOT FOUND
 55
     202
                          45
                               1.145
                                       A BB
           1613 \lor 13:17
                                                 26428.
                                                               3, 570 NG
                                                                              0. 76 YCS
                          56
                                       A BB
 56
     240
          (857) 15:18
                               1.000
                                                106520.
                                                              20,000 NG
                                                                              4. 24
           1652 13:36
                                                                              O. 43 465
 57
     202
                          56
                               0. B90
                                       A BB
                                                 22416.
                                                               2, 051 NG
     NOT FOUND
 58
 59
     NOT FOUND
     22814/1861
 ዾወ
                  15:20
                          56
                               1.002
                                       A VB 9070 10132
                                                          1.488 1-671 NG
                                                                              O. 3545
     NOT FOUND
 61
                          56
                                       A VB
 62/
     228
           1861
                  15:20
                               1.002
                                                 10132.
                                                               1. 782 NG
                                                                              0. 38 you
 63
     264
           £130) 17:32
                          63
                               1.000
                                       A BB
                                                82768
                                                              20,000 NG
                                                                              4. 24
 64
     NOT FOUND
                                                  1.84 462 56
                                                                             140 Ph 61192
 65g(252)
           2046
                  16: 51
                               0.961
                                       A BB
                          63
                                                               <del>-3.469</del> NG
                                                                              Ø. 74 447
             (-5)
                                                  17,892,0.63 - 11,842 comested from me.
CHY 11 c-mecheding = 3,464 = 0.63 152802
                                       17744 CHY 11 c-reclied mg = 3.469
SAMPLE DATA PACKAGE
                                                                            etrofleg 13 lither
         2050
                          · -- '
No.
    m/z
                                      Meth
          Scan
                  Time
                         Ref
                                RRT
                                               Area (Hght)
                                                             Amount
66W 252 2000
                                                                             0. 75 40
                 16: 51
                         63
                              0. 961
                                      A BB
                                                <del>47072.</del>
                                                        7, <del>301</del> 3, 882 NG
    252
                 17:26
67
          2117
                         63
                              0.994
                                      A VB
                                                 7012.
                                                                             0.38 463
                                                              1.778 NG
68
    276
          2437
                 20:04
                         63
                              1.144
                                      A BB
                                                 5324.
                                                              1.303 NG
                                                                             0. 28 M
69
    NOT FOUND
                                                178424 0.37
                                                            Corr. My = 3,552 + 0.37 = (31 4 my
                                        Ben(k)
70
    NOT FOUND
71
    112
           491
                  4:03
                                      A BV
                          1
                              0.728
                                               235688.
                                                             46, 665 NG
                                                                             7.89
      99
                              0. 926
72
           624
                  5:08
                          1
                                      A BV
                                               312132.
                                                             50, 732 NG
                                                                            10.76
73
     132
           642
                  5:17
                          1
                              0.753
                                      A BV
                                               184024.
                                                             37, 666 NG
                                                                             7. 99
74
    152
           697
                  5:44
                          1
                                      A BB
                              1.034
                                               111300.
                                                             30. 926 NG
                                                                             6.56
75
     82
                         13
           759
                  6:15
                              0.870
                                      A BV
                                               229236.
                                                             35, 780 NG
                                                                             7.59
76
    172
          1050
                  8: 39
                         26
                              0.904
                                      A BB
                                               293684.
                                                             32. 373 NG
                                                                             6.86
77
    330
          1292
                 10:38
                         26
                              1.113
                                      A BB
                                                44132.
                                                             41. 592 NG
                                                                             8.82
    244
          1678
                 13:49
                         56
                              0.904
                                      A BB
                                               222416.
                                                             35. 176 NG
                                                                             7.46
Nο
    Ret(L) Ratio RRT(L) Ratio
                                       Amnt
                                               Amnt(L)
                                                          R. Fac R. Fac(L) Ratio
51
    11:41
            1.00 10.000
                           0.10
                                       1.59
                                                 25.00
                                                          0.073
                                                                   1.142
                                                                             0.06
52
    11:59
                   1.000
53
    11:45
            0.99 10.000
                                       1.85
                           0.10
                                                 25.00
                                                          0.073
                                                                    0.986
                                                                             0.07
54
    12:28
                  10.000
    13:19
            1.00 10.000
55
                                       3. 57
                           0.11
                                                 25.00
                                                          0.121
                                                                    0.850
                                                                             0.14
```

7C SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: COMPUCHEM, RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HQ SDG No.: CHY11

Instrument ID: OWA08 Calibration date: 02/17/92 Time: 1746

Lab File ID: <u>HG920217B08</u> Init. Calib. Date(s): <u>01/07/92</u> <u>01/07/92</u>

Init. Calib. Times: <u>1446</u> <u>1920</u>

Diethylphthalate	1.602 0.618 1.181 0.224 0.121 0.464 0.242 0.336 0.162 1.077	1.594 0.718 1.249 0.251 0.134 0.423 0.262 0.366	0.400 0.900 0.100 0.100	-5.8 -12.0 -10.7 8.8 -8.3	25.0 25.0	
-Chlorophenyl-phenylether Fluorene -Nitroaniline -,6-Dinitro-2-Methylphenol -Nitrosodiphenylamine (1) -Bromophenyl-phenylether	0.618 1.181 0.224 0.121 0.464 0.242 0.336 0.162	0.718 1.249 0.251 0.134 0.423 0.262 0.366	0.400 0.900 0.100 0.100	-16.2 -5.8 -12.0 -10.7 8.8 -8.3	25.0 25.0	
PluoreneNitroanilineNitrosodiphenylamine (1)Bromophenyl-phenylether	1.181 0.224 0.121 0.464 0.242 0.336 0.162	1.249 0.251 0.134 0.423 0.262 0.366	0.900 0.100 0.100	-5.8 -12.0 -10.7 8.8 -8.3	25.0	
-Nitroaniline 1,6-Dinitro-2-Methylphenol	0.224 0.121 0.464 0.242 0.336 0.162	0.251 0.134 0.423 0.262 0.366	0.100	-12.0 -10.7 8.8 -8.3	25.0	
A,6-Dinitro-2-Methylphenol	0.121 0.464 0.242 0.336 0.162	0.134 0.423 0.262 0.366	0.100	-10.7 8.8 -8.3	25.0	
N-Nitrosodiphenylamine (1)	0.464 0.242 0.336 0.162	0.423 0.262 0.366	0.100	8.8 -8.3	25.0	J
-Bromophenyl-phenylether	0.242 0.336 0.162	0.262	0.100	-8.3	25.0	Į.
Mexachlorobenzene Pentachlorophenol Phenanthrene	0.336	0.366	0.100			ļ
Pentachlorophenol	0.162					j
henanthrene					25.0	
Heliaticut elle	: T.O//		0.700			}
nthracene	0.971		0.700			
anthracene	0.753	(-19.1		1
Di-n-Butylphthalate	1.782			6.1		
Sluoranthene	0.870		0.600			
Pyrene	1.484				25.0]
Butylbenzylphthalate	1.103			21.8		
3,3'-Dichlorobenzidine		,	J 1	5.4	J	
	0.202		0.800		25.0	
Benzo(a)Anthracene	1.122		0.700			
pis(2-Ethylhexyl)Phthalate	1.793	l		24.3		
ois(2-Ethylhexyl)Phthalate						
Di-n-Octyl Phthalate	3.217			10.2		
Senzo(b) Fluoranthene	1.268		0.700			
Benzo(k) Fluoranthene	1.164		0.700		25.0	
Senzo(a) Pyrene	1.034		0.700		25.0	
indeno(1,2,3-cd)Pyrene	0.961		0.400		25.0 25.0	
Dibenz(a,h)Anthracene		0.761		26.7	25.0	raffects a
Benzo(g,h,i)Perylene	, ,			20.3	25.0	Cathery a
itrobenzene-d5	0.486		0.200			
-Fluorobiphenyl			0.700		25.0	
erphenyl-d14	1.104		0.500			
Phenol-d5	1.855		0.800			
-Fluorophenol	1.513		0.600			E
,4,6-Tribromophenol	0.224			-18.8		İ
-Chlorophenol-d4	1.396		0.800	-10.0		
,2-Dichlorobenzene-d4				- 7.2		

⁽¹⁾ Cannot be separated from Diphenylamine

All other compounds must meet a minimum RRF of 0.010.

2E WATER PESTICIDE SURROGATE RECOVERY

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HQ SDG No.: CHY02

GC Column (1): DB-608 ID: 0.53 (mm) GC Column (2): RTX-1701 ID: 0.53 (mm)

								
	EPA	TCX 1	TCX 2	DCB 1	DCB 2	OTHER	OTHER	TOT
	SAMPLE NO.	%REC #	%REC #	%REC #	%REC #	(1)	(2)	OUT
	=========	======	=====	======	*====	======	======	===
01	CHY07MS	89	94	100	110		İ	i <u> </u>
02	CHY07MSD	91	93	110	110_		i	0
03	CHY02	84	86	100	110		i	<u> </u>
04	CHY03	89	91	100	110		i	i <u> </u>
05	CHY04	88	89	100	110		İ	0.
06	CHY05	82	77	100	110		İ	0
07	CHY06	80	74	100	100		İ	<u> </u>
80	CHY07	74	83	95	100_		İ	<u> 0 </u>
09	CHY08	79	<u>78</u>	97	100	·	1	1_0_1
	CHY09	82	79	99	100_1		ì	1_0_1
	CHY10	80_	77_1	100	110		l	1_0_1
	CHY24	<u> </u>	95	100	<u> 110</u>			1_0_1
	PBLK08	79	82	<u> </u>	97		l	1_0_1
14				!			l	ll
15							l	ll
16								lI
17				!			l	
18		{		l			İ	lI
19		I						l1
20	·						li	lI
21				{			ll	lI
22				i			l <u></u>	lI
23			!				li	
24				!				I
25			I	1			iI	1
26	<u> </u>		I	1				
27		!	1				I	1
28				1	1		'I	
29					!			
301			1					I

TCX = Tetrachloro-m-xylene (60-150) DCB = Decachlorobiphenyl (60-150)

page 1 of 1

[#] Column to be used to flag recovery values.

^{*} Values outside of QC Limits

D Surrogate diluted out.

3E WATER PESTICIDE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: COMPUCHEM, RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6759HO SDG No.: CHY02

Matrix Spike - EPA Sample No.: CHY07

COMPOUND	SPIKE	SAMPLE	MS	MS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
	(ug/L)	(ug/L)	(ug/L)	REC #	REC.
gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin Endrin 4,4'-DDT	0.500 0.500 0.500 1.000 1.000	0.00 0.00 0.00	0.41 0.39 0.83 0.93	84 82 78 83 93 90	56-123 40-131 40-120 52-126 56-121 38-127

COMPOUND	SPIKE ADDED (ug/L)	MSD CONCENTRATION (ug/L)	MSD % REC #	 % RPD #	, –	IMITS
gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin Endrin 4,4'-DDT	0.500 0.500 0.500 1.000 1.000	0.41 0.39 0.84	84 82 78 84 95	0	15 20 22 18 21 27	56-123 40-131 40-120 52-126 56-121 38-127

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: 0 out of 6 outside limits

Spike Recovery: 0 out of 12 outside limits

COMMENTS:	

FORM III PEST-1

^{*} Values outside of QC limits

2F SOIL PESTICIDE SURROGATE RECOVERY

्राक्षकार्थः संदर्भः

Lab Name: COMPUCHEM, RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

GC Column (1): DB-608 ID: 0.53 (mm) GC Column (2): RTX-1701 ID: 0.53 (mm)

	EPA	!	TCX	1	TCX	2	DCB	1	DCB	2	OTHER	OTHER	TOT	!
	SAMPLE I	NO.	%REC	#	%REC	#	%REC	#	&REC	#	(1)	(2)	OUT	İ
	======	====	=====	=	====	==	22222	==	=====	==	=====	======	===	1
01	CHY11		140			<u>0 *</u>)	63	<u>.</u>	74	<u>. </u>	l	l	1_1	ĺ /
02	CHY11DL		140	_	41	<u>8 *</u> 1	48	<u>*</u>	65	<u>. </u>		l	2	į V
03	CHY12		52	<u>*</u>		<u>5 *</u>	56	*	74	<u> </u>		l	_3_	1//
04	CHY13		80	<u>_</u> [12		110	<u>)</u>	99	<u>_</u>		l	_0_	
05	CHY14		100) * T	46	<u>*</u>	64	<u>.</u>		l	_2_	
06	CHY14DL		99			2*1	77	_	57	<u> </u>		l <u></u>	2_	
07	CHY16		95	1	8	<u>5</u>	340	1	380) 	 	2	
	CHY17		76	-	6(_	-	*	340		ĺ	l	2_	/
	CHY19		96		120		100	<u>_</u> [130				0	V
	CHY20	1	65			1*	<u>, 280</u>		280		P	 	3	
	CHY22	. ⊁—	(25			_		<u> * </u>	140			l	2	
	CHY23		77		<u> </u>	_		<u>/*</u>	150			l	_1_	
	CHY26		78		8		63		110				0	1
	PBLK18		85	_	100	— ·	97		100	,		l	<u> </u>	1
,	CHY18MS	I	68	_		<u>2*</u>	200	_ ,	220	,			3_	-
	CHY18MSD		74	_	9	-	310		150			l <u></u> l	1	~
	CHY18		84		11(_	190			ll	2	-
	PBLK62		75		94		74		77			ll	<u>_0</u>	
	CHY15			D		<u>)D</u>		D		민			0 1	
	CHY15DL			D		πÓl		TD1		ÐΊ		I	0	
	CHY21	<u> </u>	53	_		<u>[*</u>]	300	_	270	_ '		I	4	
	PBLK73		74	_	89	_	83	_	81	_		l	0 1	
23	·	!		!		_		_						
24		!		_[ļ		ļ		<u></u> !			!	
25		!		_ļ		—!		_!		_!			!	
26				!				<u></u> !		<u>-</u> !		[!	
27		!		!		ļ		_		_!			!	
28		<u>!</u>		_!		-!		!		_!				
29		!		!		<u>ا</u>		!		_!				
30 J		I		_I				_!		_			i	

* (Hyzz-no obvious materx effects to account for Variable TCX recovering

QC LIMITS (60-150)

TCX = Tetrachloro-m-xylene (60-150) DCB = Decachlorobiphenyl (60-150)

page $\underline{1}$ of $\underline{1}$

[#] Column to be used to flag recovery values.

^{*} Values outside of QC Limits

D Surrogate diluted out.

3F SOIL PESTICIDE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: COMPUCHEM, RTP

Contract: 68D10083

Lab Code: COMPU

Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix Spike - EPA Sample No.: CHY18

COMPOUND	SPIKE	SAMPLE	MS	MS	QC.
	ADDED	CONCENTRATION	CONCENTRATION	%	LIMITS
	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	REC.
gamma-BHC (Lindane) Heptachlor Aldrin Dieldrin Endrin 4,4'-DDT	23.148 23.148 23.148 46.296 46.296	0.00 0.36 0.27 2.6		65 65 59 62 72 62	46-127 35-130 34-132 31-134 42-139 23-134

COMPOUND	SPIKE ADDED (ug/Kg)	MSD CONCENTRATION (ug/Kg)	MSD % REC #	 % RPD #	QC L.	IMITS REC.
	=======	=========	=====	======	======	===== i
gamma-BHC (Lindane)	23.148	<u>15</u>	65	1_0_	50	46-127
Heptachlor	23.148	14	60	i8	31	35-130
Aldrin	23.148	14	59_	<u> </u>	1 43	34-132
Dieldrin	46.296	29	62_	i0	38	31-134
Endrin	46.296	34	68	6	45	42-139
4,4'-DDT	46.296	32	68	1 9	50	23-134
l				i	İ	İİ

[#] Column to be used to flag recovery and RPD values with an asterisk

RPD: 0 out of 6 outside limits

Spike Recovery: $\underline{0}$ out of $\underline{12}$ outside limits

COMMENTS:	

FORM III PEST-2

^{*} Values outside of QC limits

LABORATORY NOTICE Pesticide Fraction

Sample I.D.'s 477485 / 477492 Client I.D.'s CHYIS / CHY21 Case 17744 SDG CHYII SAS 65794Q

The above samples were extracted and analyzed within contractual holding times. After all the samples in the extraction batch had been completed, the GC/MS data reviewers sent a TIC report to the laboratory requesting confirmation of PCB in sample I.D. #477485 (CHY15), which did not match the I.D. number of the sample sent for confirmation prior to their report, which was sample I.D. #477492 (CHY21). These samples were then reextracted outside holding times and reanalyzed. The reextract data matched the TIC report for CHY15, however, we could not verify the original results for all of the target analytes in the reextract data for CHY21. We are, therefore, reporting the reextract data for these two samples with reference to this notice.

Pesticall fraction of

Sumple CH415 and

Cf421 were

Mitally switched.

Rg 6/7/92

Data Reviewer/I.D. _____/ 1569 Date 2/26/92

SDG Narrative # CHY11 Case # 17744 SAS # 6579HQ Contract # SAS6579HQ CompuChem Laboratories, Inc.

SAMPLE IDENTIFICATIONS: CHY11, CHY12, CHY13, CHY14, CHY15, CHY16, CHY17, CHY18, CHY19, CHY20, CHY21, CHY22, CHY23, CHY26

All pertinent Quality Assurance and Laboratory notices for CASE# 17744, SDG# CHY11, SAS# 6579HQ are included in the sample data package.

PESTICIDES:

Pesticides Target Compound List (TCL) analytes were confirmed in nine of these samples above the Contract Required Quantitation Limits (CRQLs). Holding time requirements were initially met for all of these samples.

The initial analyses of samples CHY11 and CHY14 yielded TCL analytes that were above the analytical range. Each of these samples were reanalyzed at a 2X dilution in order to report the analytes within the analytical range. Both analyses for each of

these samples are reported as billable.

Semivolatile analysis of sample CHY15 indicated that a PCB confirmational analysis was necessary. Inspection of the pesticide data for this sample indicated that no PCBs were present in this sample; however, the pesticide analysis of sample CHY21 contained PCB. These samples were reextracted outside of holding time and reanalyzed. Results from the reanalysis of sample CHY15 verified the semivolatile GCMS TIC identification of PCBs in the sample. The original TCL results of CHY21 could not be verified. The reextract data which was outside of holding time is being reported with this case.

The surrogate standard recovery of decachlorobiphenyl (DCB) was outside of the control range on both columns in the analysis of samples CHY18MS, CHY16, CHY17, CHY18, CHY20, and CHY21. These outliers have been attributed to matrix interference and not to

deficiencies in laboratory practice.

The surrogate standard recovery of DCB was outside of the control range on the DB-608 column in the analysis of sample CHY18MSD. The surrogate standard recovery of tetrachloro-m-xylene was outside of the control range on the RTX-1701 column in the analyses of samples CHY11, CHY14, and CHY14DL. These outliers are due to matrix interferences which affected accurate quantitation.

No surrogate recoveries are reported in sample CHY15 and CHY15DL due to the 20X and 200X dilution that were necessary to report accurate results. Arochlor 1260 was detected in the GC analysis at concentrations that require GCMS analysis. Results from the GCMS qualitative analysis positively identified arochlor 1260 in sample CHY15. Both the 20X and the 200X dilution are reported as billable.

SAMPLE DATA PACKAGE

17744 CHY 11

Pest faction 1 Sumples initially switched Mg 6/7/92

1D PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CHY21 RE

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11 Lab Code: COMPU

Matrix: (soil/water)SOIL

Lab Sample ID: <u>477492 R1</u>

Sample wt/vol:

30.00(g/m1)G

Lab File ID:

% Moisture: 35 decanted: (Y/N)N

Date Received: 01/29/92

Extraction: (SepF/Cont/Sonc)

SONC

Date Extracted: 02/20/92

Concentrated Extract Volume: 5000(uL)

Date Analyzed: 02/22/92

Injection Volume: 2.0(uL)

Dilution Factor: 1

GPC Cleanup: (Y/N)Y

pH: 6.6

(Sulfur Cleanup: (Y/N) <u>N</u>

CAS NO.

COMPOUND

CONCENTRATION UNITS': (ug/L or ug/Kg)UG/KG

319-84-6-----alpha-BHC <u>2.6|U</u> 319-85-7----beta-BHC 2.6 | U 319-86-8-----delta-BHC 2.6 U 58-89-9-----gamma-BHC (Lindane)_ <u>0.18|JP</u> 76-44-8-----Heptachlor_ <u>0.81|JPB</u> 309-00-2----Aldrin <u>1.4|JP</u> 1024-57-3-----Heptachlor epoxide 2.6 U 959-98-8-----Endosulfan I_ <u> 2.6|U</u> 60-57-1-----Dieldrin <u>2.4|JP</u> 72-55-9-----4,4'-DDE <u>6.4</u>] 72-20-8-----Endrin <u>5.1|U</u> 33213-65-9----Endosulfan II 5.1 U 72-54-8-----4,4'-DDD_ <u>5.1|U</u> 1031-07-8-----Endosulfan sulfate_ <u>5.1|U</u> 50-29-3-----4,4'-DDT <u> 13|P</u> 72-43-5-----Methoxychlor 110 P 53494-70-5----Endrin ketone <u>5.1|U</u> 7421-93-4----Endrin aldehyde 20 I P 5103-71-9----alpha-Chlordane_ 2.4 JP 5103-74-2----qamma-Chlordane 5.7 P 8001-35-2----Toxaphene <u> 260 | U</u> 12674-11-2----Aroclor-1016 <u>51 | U</u> 11104-28-2----Aroclor-1221 <u> 100|U</u> 11141-16-5----Aroclor-1232 <u>51</u>\U 53469-21-9----Aroclor-1242 <u>51 | U</u> 12672-29-6----Aroclor-1248 <u>51 | U</u> 11097-69-1----Aroclor-1254 <u>51 | U</u> 11096-82-5----Aroclor-1260 460 PB

CHY21

PC077492B20

Q

<u>250|U</u> 130|U

<u> 130 | U</u>

<u>3000|U</u>

<u>2500 | U</u>

<u>5100|U</u>

2500 | U

<u> 2500|U</u>

<u>2500 | U</u>

2500 I U

660000 C

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water)SOIL

Sample wt/vol:

30.10(g/m1)G

% Moisture: 35 decanted: (Y/N)N

Extraction: (SepF/Cont/Sonc) SONC

Concentrated Extract Volume: 5000(uL)

Injection Volume: 2.0(uL)

pH:6.6

Sulfur Cleanup: (Y/N) N

Dilution Factor: 50

Lab Sample ID: <u>477492 D51</u>

Date Received: 01/29/92

Date Extracted: 02/03/92

Date Analyzed: 02/07/92

and the level

Lab File ID:

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

CAS NO.

GPC Cleanup: (Y/N)Y

COMPOUND

5103-71-9-----alpha-Chlordane 5103-74-2----gamma-Chlordane

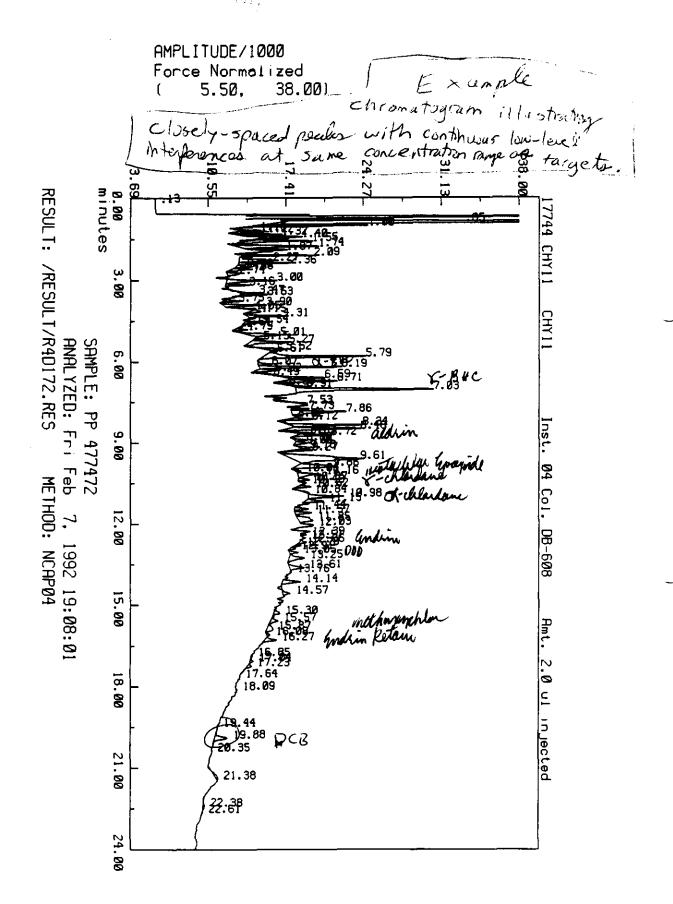
8001-35-2----Toxaphene

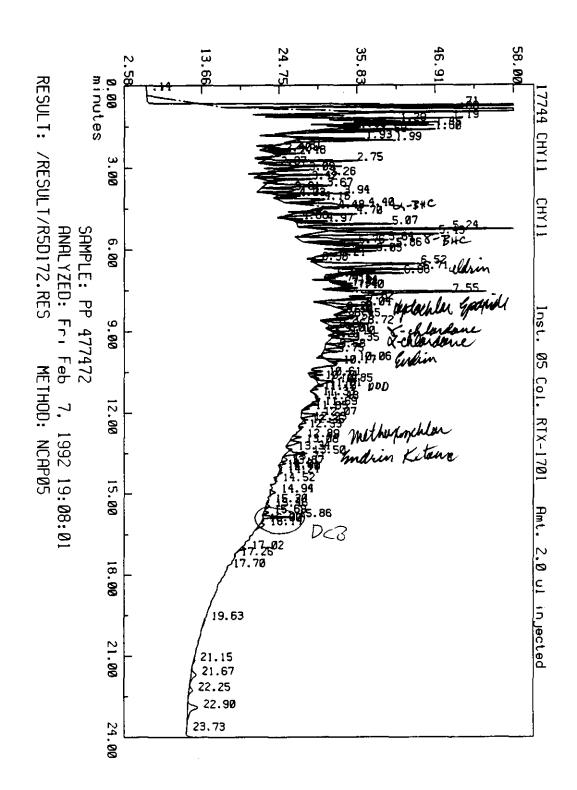
12674-11-2----Aroclor-1016

11104-28-2----Aroclor-1221

11141-16-5----Aroclor-1232

53469-21-9----Aroclor-1242


12672-29-6----Aroclor-1248


11097-69-1----Aroclor-1254

11096-82-5----Aroclor-1260

319-84-6-----alpha-BHC_ 48 | JP 319-85-7-----beta-BHC <u>130|U</u> 319-86-8-----delta-BHC 130 U 58-89-9----gamma-BHC (Lindane)_ <u> 130 I U</u> 76-44-8-----Heptachlor 130 | U 309-00-2----Aldrin_ 94 JP 1024-57-3----Heptachlor epoxide__ <u>130|U</u> 959-98-8-----Endosulfan I 130 | U 60-57-1-----Dieldrin <u> 250 | U</u> 72-55-9-----4,4'-DDE_ 250 I U 72-20-8-----Endrin_ <u>250 | U</u> 33213-65-9----Endosulfan II 250 U 72-54-8-----4,4'-DDD_ <u> 250|U</u> 1031-07-8----Endosulfan sulfate 250 | U 50-29-3-----4,4'-DDT <u> 250|U</u> 1<u>300 | U</u> 72-43-5-----Methoxychlor_ 53494-70-5----Endrin ketone 250 IU 7421-93-4----Endrin aldehyde

FORM I PEST

10A

PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

EPA SAMPLE NO.

CHY11DL

Lab Name: COMPUCHEM, RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HQ SDG No.: CHY11

Lab Sample ID : <u>477472 D20</u>

Date(s) Analyzed: 02/13/92 02/13/92

Instrument ID (1): VARIANO5

Instrument ID (2): <u>VARIAN04</u>

GC Column(1): RTX-1701 ID: 0.53(mm) GC Column(2): DB-608 ID: 0.53(mm)

	l		RT W	INDOW			I/NOT
ANALYTE ====================================	COL	RT	FROM	TO	CONCENTRATION		$\mathbf{f}(-\triangle P)$
]		1	ν.
gamma-BHC (Lindane)	1	<u> 5.65</u>	5.61	5.71	31		<u> </u>
	2	7.03	6.98	7.08	1	<u> 116.1</u>	i
delta-BHC	1	7.75	7.73	7.83	/ 1.5	L RPD >	13673
	2	8.12 210 eda	8.12	8.22	12		•
Aldrin	1	6.71				700.0 RID 10 magi	
	 2 	8.63	8.60	8.70	3.7	278.4	! !
Heptachlor epoxide	 1	8.20	8.16	8.30	$\frac{1.7}{}$	1 RPD>	1202 211)
	2	10.15	10.05	10.19	9.5	458.8	
gamma-Chlordane	1	9.01	8.87	9.01	3.3		
	 2	10.48	10.47	10.61	2.7		いる
alpha-Chlordane	1	9.10	9.06	9.20	4.4	Magn	Koly, nux
	2 2	10.97	10.88	11.02	12	172.7	
Endrin	1	10.06	10.03	10.17	6.7		
	2	12.66	12.63	12.77			
4,4'-DDD	1	11.13	<u> 11.07</u>	_11.21	1.8	margin	2 . \
page 1 of 1	2	13.04	13.02	13.16	4.8	166.7	-161)

page 1 of 1

SAMPLE DATA PACKAGE

FORM X PEST-1 CHY 11

3/90

2250

10A PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

EPA SAMPLE NO.

CHY11

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Lab Sample ID : <u>477472</u>

Date(s) Analyzed: 02/07/92 02/07/92

Instrument ID (1): VARIANO4

Instrument ID (2): <u>VARIANO5</u>

GC Column(1): <u>DB-608</u>

ID: 0.53 (mm) GC Column(2): RTX-1701 ID: 0.53 (mm)

	[1		INDOW	1		1
ANALYTE ====================================	COL	RT ======	FROM		CONCENTRATION		[
							į
alpha-BHC	1	6.07	<u> 6 00 </u>	6.10	3.7		;
	2	4.88	4,79	<u>4.89</u>	3.4	8.8	į
	 	 		:			!
gamma-BHC (Lindane)	1	7.03	7,00	7.10	52		
	2	<u>5.64</u>	<u>5.63</u>	<u>5.73</u>	34	<u>52.9</u>	
	!					K. R. C.	<i>!</i>
Aldrin	1 1	<u> 8.63</u>	8.62	8.72	4.4) 3A	ļ 1
	2	<u>6.71</u>	6.64	6.74	17	286.4	[
	! !						
Heptachlor epoxide	1	10.16	10.06	10.20	11	74	
	2	8.20	8.17	8.31	0.95	999.9	
	[] []	 	 				 !
gamma-Chlordane	1 1	10.48	10.48	10.62	1.0	> ¹¹ /	İ
	2	9.01	8.89	9.03	4.1	<u>/313.0</u>	!
	<u> </u> 	ļ 					i I
alpha-Chlordane	1	10.98	10.90	11.04	14		
	 2	9.10	9.07	9.21	5.3	164.2	
]					7311	l _K ww
Endrin	1	12.66	12.66	12.80		7311	
		10.06	10.06	10.20	:	206.2	
		i 				 	
4,4'-DDD	1 1	13.05	13.03	<u>13.17</u>	5.4		
	 2	11.13	11.08	11.22	2.8	92.9	{ [
page 1 of 2	ii	ii					İ

page <u>1</u> of <u>2</u>

10A PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

EPA SAMPLE NO.

CHY12

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Lab Sample ID : <u>477476</u>

Date(s) Analyzed: 02/07/92 02/07/92

Instrument ID (1): <u>VARIANO4</u>

Instrument ID (2): <u>VARIANO5</u>

GC Column(1): $\overline{DB-608}$ ID: 0.53(mm) GC Column(2): $\overline{RTX-1701}$

ID: <u>0.53</u>(mm)

·	RT WINDOW						
ANALYTE	COL	RT	FROM	TO	CONCENTRATION	%D	
= = = = = = = = = = = = = = = = = = =	=== : 	====== 	===≠≠ 	===== 	========= 	│≅≅≅≅ ≅≅ │ │ ┃	
alpha-BHC	1	6.07	6.00	6.10	0.38		
	 2	4.87	4.79	4.89	0.48	 <u>26.3</u>	
Heptachlor	1	7.86	7.80	7.90	1.8	Poor	
	2	6.08	6.08	6.18	0.13	999.9	
	 	 	:]]		9	
Aldrin	1	8.65	8.62	8.72	1.1	į	
	2	6.72	6.64	6.74	2.3	109.1	
	 					İ	
gamma-Chlordane	1	10.55	10.48	10.62	4.5	į	
	2	8.94	8.89	9.03	3.5	28.6	
	! !					ł	
alpha-Chlordane	1	10.93	10.90	11.04	4.1	!	
	2	9.13	9.07	9.21	9.3	126.8	
4,4'-DDE						}	
4,4'-DDE	1		11.61	İ		 	
	2	9.36	9.31	9.45	9.4	113.6	
Endrin	1	12 70	<u> 12.66</u>	12 80	7.6	į	
BildI III							
	2 	<u> 10.09</u>	10.06	<u>10.20 </u> 	9.4	<u>23.7</u>	
4,4'-DDD	 1	<u> 13.07</u>	13.03	<u> 13.17</u>	4.9	į	
		l	11.08		1	2.1	
page 1 of 2	 						

page 1 of 2
SAMPLE DATA PACKAGE

FORM X PEST-1 17744 CHY 11

10A

PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

		-
1		
!		
- 1	CHY12	

EPA SAMPLE NO.

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Lab Sample ID : <u>477476</u>

Date(s) Analyzed: 02/07/92 02/07/92

Instrument ID (1): <u>VARIANO4</u>

Instrument ID (2): <u>VARIANO5</u>

GC Column(1): <u>DB-608</u>

ID: 0.53 (mm) GC Column(2): RTX-1701 ID: 0.53 (mm)

ANALYTE	COL		FROM		CONCENTRATION	
Endosulfan II	!	!	:			1000
	 2 	L		11.28		<u> </u> 80.0
4,4'-DDT	 1 	 <u>13.79</u>	 <u>13.78</u> 	13.92		
	2	11.49	<u> 11.47</u>	11.61		<u>/ 306.3</u>
Endrin aldehyde	 1 	14.04	 <u>13.96</u> 	14.10	l (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	i 2 i	<u> 12.12</u>	<u>12.04</u>	12.18		_ 7 07.7
Endosulfan sulfate	j i			14.42	[\ps:// \ps://
	2	<u>12.91</u> 	<u>12.77</u> 	12.91	16	240.4
Methoxychlor	j i	i .		16.13		i
	[2 	<u>13.08</u>	<u>12.97</u> 	<u>13.11</u> 	45	<u>200.0</u>
	1			 		i
	2 					
	1 1					
	2 	 		 		
	1 2	 	 	 		
200 2 of 3	<u> </u>					

page 2 of 2

SAMPLE DATA PACKAGE

FORM X PEST-1 17744 CHY 11

10A PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

EPA SAMPLE NO.

CHY13

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

्_र्वे**र** ्रक्ष

Lab Sample ID: 477483 Date(s) Analyzed: 02/07/92 02/07/92

Instrument ID (1): VARIANO4

Instrument ID (2): <u>VARIANO5</u>

GC Column(1): $\underline{DB-608}$ ID: $\underline{0.53}$ (mm) GC Column(2): $\underline{RTX-1701}$ ID: $\underline{0.53}$ (mm)

	l	!	•	INDOW		<u> </u>
ANALYTE	COL	RT =====	FROM	•	CONCENTRATION	•
Heptachlor	j 1	7.86	7.80	7.90	(1.1)	10000
	 2	 <u>6.11</u>	6.08	6.18	! (;	685.7
Aldrin	 1	 <u> 8.66</u>	 <u>8.62</u>	8.72	 	r
	i 2	6.74	6.64	6.74	0.41	24.2
Heptachlor epoxide	 1	10.17	10.06	10.20	0.56	
	2	8.24	8.17	8.31	0.24	133.3
gamma-Chlordane	 1	10.52	10.48	10.62	0.13	
	2	<u>8.99</u>	8.89	9.03	0.13	0.0
alpha-Chlordane	 1	10.94	10.90	_11.04	0.26	Je 236
	 2 	9.16	9.07	9.21	1 / 1	553.8
Dieldrin	 1	11.82	11.74	11.88	4.5	1009
	 2 	9.63	9.59	9.73	0.46	878.3
Endrin	1	<u>12.78</u>	12.66	12.80	2.6	ļ
	2	10.12	10.06	10.20	1.6	62.5
Endosulfan II	1	<u> 13.23</u>	<u> 13.13</u>	13.27	0.71	ļ
	2	11.23	11.14	11.28	0.32	121.9

page 1 of 2 SAMPLE DATA PACKAGE

17744 CHY 11

10A PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

EPA SAMPLE NO.

CHY14DL

Lab Name: COMPUCHEM, RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Lab Sample ID : 477484 D20

Date(s) Analyzed: 02/13/92 02/13/92

Instrument ID (1): VARIANO5

Instrument ID (2): VARIANO4

GC Column(1): RTX-1701 ID: 0.53(mm) GC Column(2): DB-608 ID: 0.53(mm)

			•	INDOW		95
ANALYTE 	COL ===	RT =====	FROM	TO =====	CONCENTRATION ==========	
 gamma-BHC (Lindane)	1	<u> 5.66</u>	5.61	<u>5.71</u>	34	
	2	 <u>7.04</u>	6.98	7.08	46	35.3
 Heptachlor	1	6.06	6.06	6.16	2.8	/ hose
	2	7.86	7.78	7.88	i !	650.0
 delta-BHC	 1		7.73	7.83	5.5	
	2	8.12	8.12	8.22	14	154.5
 	 	6,72	6.63	6.73	12	morand
	2	8.63	8.60		/	275.0
 	 	8.22	8.16	8.30	4.6	
	2	10.05	10.05	10.19	1.9	142.1
 gamma-Chlordane		8.87	8.87	9.01		
	2		10.47]		236.4
 Endosulfan I	1 1	8.75	8.75	8.89	14	† †
	2		10.93			<u>57.1</u>
 Dieldrin	 1	9.59	9.57	9.71	3.3	
	2				5.9	78.8
1 of 2	l					1

page 1 of 2 SAMPLE DATA PACKAGE

17744 CHY 11

PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

EPA SAMPLE NO.

CHY14DL

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Lab Sample ID : <u>477484 D20</u>

Date(s) Analyzed: 02/13/92 02/13/92

Instrument ID (1): VARIANO5

Instrument ID (2): VARIANO4

GC Column(1): RTX-1701 ID: 0.53 (mm) GC Column(2): DB-608 ID: 0.53 (mm)

			no ri	ENDON		 ,
ANALYTE	COL	,	RT W. FROM =====		 CONCENTRATION ========	, ,
Endrin	1	10.07	10.03	10.17	6.6	
	 2 	 <u>12.67</u>	 <u>12.63</u> 	12.77	4.5	46.7
4,4'-DDD	1	_11.14	11.07	11.21	3.8	! j
	2	13.06	 <u>13.02</u> 	13.16	5.4	42.1
4,4'-DDT	1	11.49	11.45	11.59	1.8	!
	2	<u>13.78</u>	13.75	13.89	2.8	55.6
Endrin aldehyde	1	12.12	<u> 12.02</u>	12.16	$\frac{11}{11}$	1000
	2	14.01	13.94	14.08	1	· ·
	1	 	 	 		
	2	 	 			
	1	 				
	2	<u> </u>	 			
	1	 	 			
	2		 		 	
	1		 			
200 2 of 2	2		 			

page 2 of 2 SAMPLE DATA PACKAGE

17744 CHY 11

EPA SAMPLE NO.

PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

Lab Name: COMPUCHEM, RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HQ SDG No.: CHY11

Lab Sample ID : <u>477484</u>

Date(s) Analyzed: 02/07/92 02/07/92

Instrument ID (1): <u>VARIANO4</u>

Instrument ID (2): <u>VARIANO5</u>

GC Column(1): DB-608 ID: 0.53 (mm) GC Column(2): RTX-1701 ID: 0.53 (mm)

		_ _	RT W	INDOW		
ANALYTE	COL	RT	FROM	TO	CONCENTRATION	%D ∣
======================================	= = ·	====== 	=≈==≠≈ !	= = = = = 		======
alpha-BHC	1	6.00	6.00	6.10	0.36	1700
	<u> </u>	4 00	j . 4 70	4.89	(
	2 	4.88	<u> 4.79</u> 	<u> </u>	2.0	677.8
	<u> </u>				40	İ
gamma-BHC (Lindane)	1	7,04	7.00	7.10	49	
	2	5.65	5.63	5.73	40	22.5
	!		1	!		
Aldrin	1 1	8.64	8.62	8.72		
		(72		6 74	15	248.8
	2	6.72	6.64	6.74	13	_ <u>490.0</u>
	j					ļ
Heptachlor epoxide	1	10.16	<u> 10.06</u>	$\frac{10.20}{1}$	12	ľ
	2	8.21	8.17	8.31	5.6	114.3
			<u> </u>			1
gamma-Chlordane	1 1	10.49	 <u>10.48</u>	10.62	3.3	
	 2	0.01	 <u>8.89</u>	9 03	2 7	12.1
	Z 	3.01	2 	<u>- 9.03</u> 	 	2. _
		10.00	. 10.00	11 04		1
alpha-Chlordane	1	10.99	10.90	<u> </u>)
	2	9.11	9.07	9.21	6.2	287.1
	 		 		. ~	
Endrin	1	12.69	12.66	12.80	4.4	Jesor !
	2	10 07	 <u>10.06</u>	 10 201	\ 1.4	218.2
	- L		<u> </u>	<u> </u>		
4 4 1 000		12.00	1 12 02	ן יידו כון	6.4	1
4,4'-DDD	1	13.00	13.03	<u> </u>	<u>0.4</u>	J I
	2	11.14	11.08	11.22	4.3	<u>48.8</u>
page 1 of 2	l !		l			\

page 1 of 2SAMPLE DATA PACKAGE

17744 CHY 11

EPA SAMPLE NO.

CHY14

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Lab Sample ID : <u>477484</u>

Date(s) Analyzed: 02/07/92 02/07/92

Instrument ID (1): <u>VARIAN04</u>

Instrument ID (2): <u>VARIANO5</u>

GC Column(1): DB-608 ID: 0.53(mm) GC Column(2): RTX-1701 ID: 0.53(mm)

	1	1	ነ ጽሞ ₩	INDOW	1	
ANALYTE	COL	RT	FROM		 CONCENTRATION	%D
	===	=====	=====	=====	========	=====
4,4'-DDT	1 1	 13 70	13 78	 13 02	 <u> </u>	
4,4 -001	1 -	<u> </u>	13.70	 13,76]
	2	11.49	11.47	11.61	2.4	60.0
	ļ			j		
Endrin aldehyde	 1	14.00	13.96	14.10	3.1	1 N.C.,pC I
•			ĺ	l	1	1 12
	2	$\lfloor \frac{12\cdot 11}{} \rfloor$	12.04	12.18	$-\frac{12}{}$	287.1
	i			!]
Endosulfan sulfate	1	14.29	14.28	14.42	0.69	200
	 2	 12.91:	12.77	12.91	\ 4.0	479.7
	-	_ ** * * *				/ <u></u>
	! .	15.00		16.13		į į
Methoxychlor	1	<u>15.09</u>	15.99	<u> 10.13</u>	10.0	
	2	13.09	12.97	13.11	25	150.0
	!					!!!
Endrin ketone	 1	 16.28	16.17	 16.31	8.2	, <u>1</u>
	İ					i
	2	<u> </u>	13.62	13.76	4.6	78.3
	i i	 				
	1 1					i
	 2				!	
	2 					
	i i	j				. i
	1				<u> </u>	
	 2				 	
	j i				1	
	1 1				!	!
	1					
	2					
				ll		

page 2 of 2 SAMPLE DATA PACKAGE

FORM X PEST-1 17744 CHY 11

PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

EFA	SHILLIE	140.	

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

CHY16

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Lab Sample ID : <u>477486</u>

Date(s) Analyzed: 02/07/92 02/07/92

Instrument ID (1): <u>VARIANO5</u>

Instrument ID (2): <u>VARIANO4</u>

GC Column(1): RTX-1701 ID: 0.53(mm) GC Column(2): DB-608

ID: <u>0.53</u>(mm)

ANALYTE	COL	•	FROM		 CONCENTRATION ==========	
alpha-BHC	= = = 1	===== <u>4.86</u>	j	4.89		/ Maisy
	2	6.00	 <u>6.00</u>	6.10	1.1	218.2
gamma-BHC (Lindane)	. 1	5.73	5.63	5.73	4.4	سن مي 🗸
	1 2	 <u>7.05</u> 	 <u>7.00</u> 	7.10	100	999.9
beta-BHC	1	 <u>7.35</u>	 <u>7.27</u> 	7.37	 6.6	
	2	7.21	7.21	7.31	3.9	<u>69.2</u>
Heptachlor	 1	 <u>6.17</u>	 <u>6.08</u> 	6.18	0.16	آذراتها
	2	<u>7.85</u>	7.80	7.90	20	999.9
Aldrin	1	6.64	6.64	6.74		i
	2	8.65	8.62 	8.72	6.3	142.3
gamma-Chlordane	1	 <u>8.96</u> 		9.03		;
	2	<u>10.55</u> 	10.48	10.62	<u>11</u>	<u>36.4</u>
alpha-Chlordane	1	İ	9.07			!
	2 	<u>10.93</u> 	i <u>10.90</u> I	11.04		181.8
Endosulfan I	1	8.86		8.91	i /	i v
1 05 2	2 .	<u>11.04</u> 	10.96 		0.37	999.9

page <u>1</u> of <u>2</u>

SAMPLE DATA PACKAGE

FORM X PEST-1 17744 CHY 11

EPA SAMPLE NO.

CHY16

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Lab Sample ID : <u>477486</u>

Date(s) Analyzed: 02/07/92 02/07/92

Instrument ID (1): VARIANO5

Instrument ID (2): <u>VARIAN04</u>

GC Column(1): RTX-1701 ID: 0.53(mm) GC Column(2): DB-608 ID: 0.53(mm)

ANALYTE	 COL		FROM	,	 CONCENTRATION =======	
4,4'-DDE	1	9.35	9.31	9.45	42	pour
	 2 	<u>11.67</u>	11.61	_11.75	13	/223.1
Dieldrin	! 1 	 <u> </u>	9.59	9.73	 <u>37</u>	
	2	11.80	11.74	_11.88	74	100.0
Endrin	 1 	10.07	10.06	10.20	1 / 1	18-5
	2	<u>12.70</u>	12.66	12.80	160	<u>/247.8</u>
Endosulfan II	 1 	11.22	11.14	_11.28	190	
	2	<u>13.21</u>	13.13	_13.27	64	196.9
Endrin aldehyde			1		[700
	2	14.03	<u>13.96</u>	_14,10		/ 579.2
Endosulfan sulfate			12.77		\	1600/
	2	14.37	14.28	14.42	19	00.0
Methoxychlor	ĺ	İ			180	} [
	2	<u>16.07</u>	<u>15.99</u>	16.13	410	127.8
	1	 				
2 of 2	2 	 				

page 2 of 2 SAMPLE DATA PACKAGE

17744 CHY 11

PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

1	
i	CHY17

EPA SAMPLE NO.

Lab Name: COMPUCHEM, RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Lab Sample ID : <u>477487</u>

Date(s) Analyzed: 02/07/92 02/07/92

Instrument ID (1): VARIANO5

Instrument ID (2): VARIANO4

GC Column(1): RTX-1701 ID: 0.53(mm) GC Column(2): DB-608ID: 0.53(mm)

	1	1	RT W	INDOW		
ANALYTE	COL	•	FROM	•	CONCENTRATION	•
=====================================	≈==	=====	=====	======	=======================================	======
 gamma-BHC (Lindane)	1 1	5.66	5.63	5.73	14	
	1 2	7.06	7.00	7.10	31	121.4
 Heptachlor	 1	6.12	 6.08	6.18	21	
	2		7.80)		i
				 		!!
Aldrin) 1	6.69	6.64	6.74	15	
	2	8.66	8.62	8.72	14	7.1
 Heptachlor epoxide	; [8.19	8.17	8.31	0.19	كانام
	2		10.06		1 1	/ <u>531.6</u>
1]			}		1
gamma-Chlordane	1	8,98	8.89	9.03	4.7	1000
	2	10.56	10.48	10.62	0.093	999.9
 Dieldrin		9 65	9.59	 9 73		j
	! <u> </u>					į
	2 	<u>11.81</u>	<u>11.74</u>	<u>11.88</u> 	47	<u>51.6</u>
Endrin	1	10.10	10.06	10.20	55	
	2	12.72	12.66	_12.80	39	41.0
Endosulfan II		11.25	11.14	 		
	ĺĺ			[2.2	Ì
page 1 of 2	l İ			l		

page 1 of 2 SAMPLE DATA PACKAGE

17744 CHY 11

EPA SAMPLE NO. PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

CHY18

Lab Name: COMPUCHEM, RTP

Contract: 68D10083

Lab Code: COMPU Case No.: <u>17744</u> SAS No.: <u>6579HO</u> SDG No.: <u>CHY11</u>

Lab Sample ID : <u>477489 R1</u>

Date(s) Analyzed: 02/18/92 02/18/92

Instrument ID (1): VARIAN04

Instrument ID (2): VARIANO5

GC Column(1): <u>DB-608</u> ID: 0.53(mm) GC Column(2): RTX-1701 ID: 0.53(mm)

ANALYTE	COL	 RT =====	RT W: FROM	INDOW TO ======	CONCENTRATION	
Aldrin	 1	8.61	8.60	8.70	0.36	
	1 2 	6.71	6.63	6.73	0.76	111.1
Heptachlor epoxide	 1	10.12	10.05	10.19	1.1	
	2 2	8.18 8.18	8.16	8.30	0.54	103.7
gamma-Chlordane	! 1	10.58	_10.47	<u> 10.61</u>	(0.23	1
	 2 	8.96	8.87	9.01	3.7	999.9
4,4'-DDE	1 1	11.64	11.59	_ <u>11.73</u>	2.8	
	2	9.34	9.30	9.44	3.2	14.3
Dieldrin	1 1	<u> 11.77</u>	11.71	<u> 11.85</u>	19	Poor
	2	9.60	9.57	9.71	0.27	999.9
Endrin	1	12.73	12.63	12.77	2.6	por !
	2	10.07	10.03	10.17	15	476.9
Endosulfan II	1	13.18	13.11	13.25	2.6	
	2	11.20	11.12	11.26	2.7	3.8
4,4'-DDT		13.80	13.75	13.89	0.72	
	2	11.47	11.45	11.59	0.48	50.0

page <u>1</u> of <u>2</u>

17744 CHY 11

EPA SAMPLE NO.

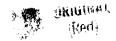
PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

CHY18

Lab Name: COMPUCHEM, RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11


Lab Sample ID : 477489

Date(s) Analyzed: 02/07/92 02/07/92

Instrument ID (1): <u>VARIANO4</u> Instrument ID (2): <u>VARIANO5</u>

GC Column(1): DB-608 ID: 0.53 (mm) GC Column(2): RTX-1701 ID: 0.53 (mm)

	(1	RT W	INDOW		 [
ANALYTE	COL	RT	FROM	TO	CONCENTRATION	
	===	=====	=====	=====	=======================================	=====
Heptachlor	1	7.85	7.80	7.90	0.30	
·	1 2	6.08	6.08	6.18	0.12	150.0
 Heptachlor epoxide	 1	 <u>10.17</u>	 <u>10.06</u>	 10.20	1.8	 ``````
<u> </u>	2		i		·	<u>.445.5</u>
 gamma-Chlordane) 1	10.58	 <u>10.48</u>	 	4.1] [د در در ا [الكراد
			8.89	_	:	272.7
] 	10.04	10.00	11 04		
alpha-Chlordane	i i		10.90 9.07			i i
4,4'-DDE	1 2		11.61 9.31			92.3
Dieldrin	j j		<u> 11.74</u>			i
	2	9.64	9.59	<u>9.73</u> 	1.0	140.0
Endrin	1	12.71	12.66	12.80	4.2	
	2	10.10	10.06	10.20	5.0	19.0
4,4'-DDD	1	13.08	<u>13.03</u>	13.17		P36'
	2	11.10	11.08	11.22	0.99	152.5
	. — .					

EPA SAMPLE NO.

CHY18

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Lab Sample ID : <u>477489</u>

Date(s) Analyzed: 02/07/92 02/07/92

Instrument ID (1): VARIANO4

Instrument ID (2): VARIANO5

GC Column(1): DB-608 ID: 0.53(mm) GC Column(2): RTX-1701 ID: 0.53(mm)

ANALYTE	COL	-	FROM	•	 CONCENTRATION	%D
Endosulfan II	1	13.20	 <u>13.13</u>	13.27	0.49	FOOT
	2	11.23	11.14	11.28	5.2	961.2
4,4'-DDT	1	13.79	 <u>13.78</u> 	13.92	6.1	
	2	11.50	<u>11.47</u>	_11.61	2.2	<u>177.3</u>
Endrin aldehyde		14.02				i, i
	2	12.12	12.04	12.18	7.5	650.0
Endosulfan sulfate]	14.28			l / I	ξ <u> </u>
	2	12.90	12.77	12.91		497.8
Methoxychlor	ĺ					المراز ا
	2	<u>13.08</u>	12.97	<u>13.11</u>	11	999,9
	1		 		 	
	2	 				
	1					
	2	 			f 	
	1					
	2					

EPA SAMPLE NO.

CHY19

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Lab Sample ID : 477490

Date(s) Analyzed: 02/07/92 02/07/92

Instrument ID (1): <u>VARIANO4</u>

Instrument ID (2): <u>VARIANO5</u>

GC Column(1): DB-608 ID: 0.53 (mm) GC Column(2): RTX-1701 ID: 0.53 (mm)

1	1	<u> </u>	RT W	INDOW		
ANALYTE	COL	RT	FROM	TO	CONCENTRATION	%D
=======================================	===	=====	=====	*====	=======================================	=====
alpha-BHC	 1	 <u>6.02</u>	 <u> 6 00 </u>	6.10	0.081	
	 2	4.85	 <u>4.79</u>	4.89	0,15	<u>85.2</u>]
Heptachlor	 1	 <u>7.86</u>	1 7.80	7.90		
	2	6.11	Ì	6.18		766.7
	,	 	 	 		
Aldrin	1	8.65	8.62	8.72	0.39	
	2	6.74	6.64	6.74	0,50	28.2
Heptachlor epoxide	1	10.17	_10.06	10.20	0.41	
	 2 	8.21	 <u>8.17</u> 	8.31	0.63	53.7
4,4'-DDE	1 1	<u>11.69</u>	11.61	<u>11.75</u>	1.2	
	 2 1	9.36	9.31	9,45	1.1	9.1
Dieldrin	 1	11.82	<u> 11.74</u>	11.88		Post
	 2	9.64	 <u> </u>	9.73	0.10	<u>,999.9</u>
Endrin	1 1	<u>12.78</u>	12.66	12.80		\p301
	! 2	10.10	 <u>10.06</u>	10.20	6.0	300.0
Endosulfan II	1 1	13.24	13.13	13.27	0.48	
	l 2	11.23	 <u>11.14</u> 	11.28	0.87	81.2
1 6 0	· —— ·		· ——		· 	

page 1 of 2 SAMPLE DATA PACKAGE

FORM X PEST-1 CHY 11

EPA SAMPLE NO.

CHY20

Lab Name: COMPUCHEM, RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

yore"

Lab Sample ID : <u>477491</u>

Date(s) Analyzed: 02/07/92 02/07/92

Instrument ID (1): VARIANO5

Instrument ID (2): VARIANO4

Promafoguan had confining peoples

um) GC Golumn(2): DB-608

ID: ID: ID: 0.53(mm) GC Column(1): <u>RTX-1701</u> 0.53(mm)

	1	1	RT W	INDOW		1
ANALYTE	COL	RT	FROM	TO	CONCENTRATION	%D i
	===	 =====	=====	=====		======
beta-BHC	1	 <u>7.36</u>	7.27	7.37	5.4	
	2	 <u>7.31</u>	7.21	7.31	1.3	315.4
Heptachlor	1 1	6.08	 <u>6.08</u>	6.18	1.8	- -
	 2	 <u> </u>	 <u>7.80</u>	7.90	} \ \	/8 44.4
Aldrin	1	 <u>6.72</u>	 <u>6.64</u>	6.74	8.1]
	 2	Ì	8.62	ĺ		44.6
 Heptachlor epoxide	 1	8.23	 <u>8,17</u>	8.31	2.3	ا آد ن (الم
	2	10.17	10.06	10.20	į .	273.9
 gamma-Chlordane	 1	 <u> </u>	8.89	9.03		- 1 - 100g
	2	10.55	10.48	10.62	/ 1	435.7
4,4'-DDE	1 1	9.35	9.31	9.45		
	2	11.68	11.61	11.75	11	
Dieldrin	1	9.64	9.59	9.73	14	
	2	<u> 11.81</u>	11.74	11.88	38	171.4
Endrin	1	10.08	10.06	10.20	34	 -
	2	12.71	<u> 12.66</u>	12.80	52	<u>52.9</u>

page 1 of 2 SAMPLE DATA PACKAGE

FORM 17744 CHY 11

3/90

2272

Sign(I)

10A PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

EPA SAMPLE NO.

CHY20

Lab Name: COMPUCHEM, RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Lab Sample ID : <u>477491</u>

Date(s) Analyzed: 02/07/92 02/07/92

Instrument ID (1): <u>VARIANO5</u>

Instrument ID (2): <u>VARIANO4</u>

GC Column(1): RTX-1701 ID: 0.53 (mm) GC Column(2): DB-608 ID: 0.53 (mm)

 ANALYTE ====================================	 COL	 RT ======	FROM		 CONCENTRATION =========	
Endosulfan II	1	 <u>11.23</u>	11.14	11.28	73	1201
1 1	 2 	13.21	13.13	<u> 13.27</u>	20	<u>/265.0</u>
Endrin aldehyde	1	12.11	12.04	12.18	190	Poul
 	2	14.03	 <u>13.96</u>	14.10	17	<u>/999.9</u>
Methoxychlor	1	<u> 13.03</u>	<u> 12.97</u>	<u> 13.11</u>	120	
	 2 	16.08	<u> 15.99</u>	16.13	2 <u>50</u>	108.3
	1	 				
	 2 	 	· 	 	 	
 	1	 	 			
] 	2	 		 		
	1	 			 	
	2	 	 	 	 	
 	1			 		· · · · · · · · · · · · · · · · · · ·
	2	 	 	 		
 	1	 	 	 	/ 	
}	2] 		 		

PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

EPA SAMPLE NO.

CHY21

Lab Name: COMPUCHEM, RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Lab Sample ID : 477492 R1

Date(s) Analyzed: 02/22/92 02/22/92

Instrument ID (1): <u>VARIANO5</u>

Instrument ID (2): VARIANO4

GC Column(1): RTX-1701 ID: 0.53 (mm) GC Column(2): DB-608 ID: 0.53 (mm)

ANALYTE	COL	 RT	RT W	INDOW I TO	CONCENTRATION	 %D
######################################	===	======	=====	======	======================================	======
gamma-BHC (Lindane)	1 1	5.70	5.61	5.71	0.18	Pur
	l 2 	 <u>7.07</u> 	6.98	1 1 7.08	54	999.9
Heptachlor	1	6.12	6.06	<u>6.16</u>	0.81	 {}'&4
	 2 	 <u>7,87</u>	7.78	7.88	6.8	739.5
Aldrin	1	6.66	6.63	<u>6.73</u>	1.4	İ
	 2	8.66	8.60	8.70	2.0	42.9
Methoxychlor	1	<u> 13.04</u>	<u> 12.95</u>	<u> 13.09</u>	110	
	! ! 2	<u> 16.05</u>	15.97	16.11	180	63.6
gamma-Chlordane	1 1	<u>8.99</u>	8.87	<u>9.01</u>	14	İ
	 2	10.55	10.47	10.61	5.7	145.6
alpha-Chlordane	1 1	9.16	9.06	9.20		P009
	 2 	10.92	10.88	11.02	2.4	566.7
4,4'-DDE	1	9.37	9.30	9.44	6.4	j
	 2	 <u>11.67</u>	11.59	11.73	6.5	2.6
Dieldrin	 1	9.57	9.57	9.71	2.4	1 3000
	2	 <u>11.80</u>	11.71	11.85		999.9
1	'——'	·			_ 	

EPA SAMPLE NO.

PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

Contract: 68D10083 Lab Name: COMPUCHEM, RTP

CHY22

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Lab Sample ID : 477493

Date(s) Analyzed: 02/08/92 02/08/92

Instrument ID (1): VARIANO4

Instrument ID (2): <u>VARIANO5</u>

GC Column(1): DB-608 ID: 0.53 (mm) GC Column(2): RTX-1701 ID: 0.53 (mm)

1	Ī		RT W	INDOW	<u> </u>	
ANALYTE	COL		FROM	1	CONCENTRATION	&D
	•	!	=====	!	========	===== ``.
gamma-Chlordane	1 1	10.54	10.48	10.62	$\left[\begin{array}{cccc} 2.1 \end{array}\right]$	P Design
	l .	l			1] <u>999 9</u>
	2	<u>8.91</u>	8.89	<u>9.03</u>	1 7 10	999.9
		,				2000
alpha-Chlordane	1	<u>10.91</u>	10.90	11.04	$\lfloor \frac{3.5}{1} \rfloor$	
! 	2	9.21	9.07	9.21	17	$\sqrt{385.7}$
		į — · — ·			/	ļ
 4,4'-DDE	1 1	 11.67	11.61	11.75	1.6	! !
	İ			ĺ	1	i
	2	9.35	9.31	9.45	1.6	
	! 					1
Dieldrin	1	11.81	11.74	11.88	j9.4	}
	1 2	! 9.65	9.59	9.73	6.2	51.6
İ						i
) 4 , 4 ' -DDT	 1	 13.79!	 13.78	 13.92	 3.9	. <u>1</u>
	i i	i —			j l	İ
	2	11.50	<u> 11.47</u>	<u> 11.61</u>	2.3	<u>69.6</u>
	! !	[! 			600
Methoxychlor	1	16.08	<u>15.99</u>	<u>16.13</u>	180	1
	1 2 1	l 13.03	12.97	13.11	\ \ \ 26	/592.3
		<u> </u>				
 Endrin ketone	 1	16 24	<u> 16.17</u>	16.31	 13	1 850
and In Recone	Ì		İ	Ì	1	1
	2	13.68	<u>13.62</u>	13.76	0.66	999.9
İ	1		 		ļ	i
<u> </u>	i 2	 	 			1
			 			'

EPA	SAMPLE	NO.
-----	--------	-----

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

CHY23

Lab Code: <u>COMPU</u>

Case No.: <u>17744</u> SAS No.: <u>6579HO</u> SDG No.: <u>CHY11</u>

Lab Sample ID : <u>477494</u>

Date(s) Analyzed: 02/08/92 02/08/92

Instrument ID (1): VARIAN04

Instrument ID (2): VARIANO5

GC Column(1): <u>DB-608</u>

ID: 0.53 (mm) GC Column(2): RTX-1701 ID: 0.53 (mm)

	l		RT WINDOW			
ANALYTE	COL	RT	FROM	•	CONCENTRATION	
	 	 	· · · · · · · · - · · - · · - · · · ·	 	· · · · ·	
beta-BHC	1	7,21	$\frac{7.21}{1}$	<u>7.31</u>	0.87	
	2	7.35	7.27	7.37	1.8	106.9
	 	 	 	! !		k [\]
Heptachlor	1	7.87	7.80	7.90	0.23	
	2	6.18	6.08	6.18		421.7
	[]	 	 	 	\	
Endrin	1	12.71	12.66	12.80	1.4	!
	2	10.11	10.06	10.20	1.5	7.1
]
Endosulfan II	1	13.22	13.13	13.27		المن
	2	11.23	11.14	11.28	1.6	290.2
	! 			 	 	
Endrin aldehyde	1	13.99	13.96	14.10	0.68	, (1
	2	12.12	12.04	12.18	4.3	532.4
Methoxychlor	1	16.08	15.99	16.13	8.1	100
	2	13.09	12.97	13.11	1.4	478.6
	 			<u> </u>		/
	1	 				i
	2		 	 		!l
	 					
	1			 		
	2	 	 		 	
200 1 06 1						

page 1 of 1SAMPLE DATA PACKAGE

FORM X PEST-1 17744 CHY 11

EPA SAMPLE NO.

PESTICIDE IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

CHY26

Lab Name: COMPUCHEM, RTP

Contract: 68D10083

PER STATES

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Lab Sample ID : <u>477495</u>

Date(s) Analyzed: 02/08/92 02/08/92

Instrument ID (1): <u>VARIANO4</u>

Instrument ID (2): <u>VARIANO5</u>

GC Column(1): <u>DB-608</u>

ID: 0.53 (mm) GC Column(2): RTX-1701 ID: 0.53 (mm)

	1	1	RT W	INDOW	<u> </u>	
ANALYTE	COL	•	FROM		CONCENTRATION	
	i	, 		1	=======================================	ا ا
gamma-BHC (Lindane)	1	7.05	7.00	7.10		
!	2	5.69	5.63	5.73	0.091	999.9
	{ 1	} 		} 		!
beta-BHC	1	7.31	7.21	7.31	0.28	
	2	1 7.35	7.27	7.37	0.67	139.3
·	[[[]		[
Heptachlor	1	7.86	7.80	7.90	1.9	أنفرم
	i 2	 <u>6.10</u>	6.08	 <u> 6.18</u>	0.19	900.0
				<u> </u> 	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Aldrin	1	8.65	8.62	8.72	0.58	
	1 2	6.72	6.64	6.74	0.56	3.6
	į					
4,4'-DDE	1 1	1 11.66	11.61	11.75	0.80	
	1 2	 9.36	9.31	9.45	1.2	50.0
Dieldrin	1) <u>11.82</u>	11.74	 <u>11.88</u>	$\frac{3.3}{}$	ا ، ۱۳ رفی
	 2	9.63	9.59	 <u> </u>	0.26	999.9
Endrin	 1	12.78	12.66	12.80	4.0	!
	1 2	10 09	10.06	10.20	3.3	21.21
						
Endosulfan II	1	13.24	13.13	13.27	0.28	1004
	2	11.23	11.14	11.28	2.6	l l
	l l			l	/	

page 1 of 2

SAMPLE DATA PACKAGE

FORM X PEST-1 17744 CHY 11

EPA SAMPLE NO.

CHY26

FOR S	SINGLE	COMPONENT	ANALYTES	
-------	--------	-----------	----------	--

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HQ SDG No.: CHY11

Lab Sample ID: 477495 Date(s) Analyzed: 02/08/92 02/08/92

Instrument ID (1): <u>VARIANO4</u> Instrument ID (2): <u>VARIANO5</u>

GC Column(1): DB-608 ID: 0.53(mm) GC Column(2): RTX-1701 ID: 0.53(mm)

ANALYTE	COL	•	RT W	•	 CONCENTRATION	
4,4'-DDT		! 	13.78	ì		pa
	2	 <u>11.50</u> 	11.47	11.61	1	987.0
	_ 1	! !	<u> </u> 	 		
	2	! 	! 	 	 	<u> </u>
	_ 1	 				
	2	 	 	 	 	
	_ 1					
	2	 	! [[
	_ 1	 	 	 		
	2	 				
	_ 1	 	<u> </u>	 	 	
	2					
	_ 1	 	 	 	 	
	2			 	[
	_ 1	 		 	 	
	2		 		 	

page 2 of 2 SAMPLE DATA PACKAGE

Lab Name: COMPUCHEM, RTP

17744 CHY 11

YTICA	LICABLE	02-26	0's.:		
S EXAM	LICABLE	SAMPLE N	0's.:		
S EXAM	M.JE	02-26			
S EXAM	IINED				
S EXAM	IINED				
		000152			
		00001524			
		0909152			
		08081514			
		08081.534			
N DETA	11		AREAS	SUPP	
		IDENTI		ATTACH	
CK(V) IF STNOTE LI IMMENTS	YES ETTER C BELOW F	CHECK (V) OR FOOTNOT! FOR COMMEN	E NUMBER	CHECK (V) OR IDEI ATTACH MI	NTIFY
1 /~	[]	1.11	$\sim 10^{-10}$	<u> </u>	T- 1
م في المالية	/ w /37	2 4 5 m	ਨੇ / ਅ <i>ਤਿ</i>	3 40 M	[중소] 등 [
34 35	\$ \$ \$	18213313	3/3/3	2/83/34/	CYAND CYAND
\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Z \$ 3	9 4 2 4 9	š / ž /šš	1/2 4/36/2	:E/ 3 /
~ 3=	े जिसे	~~/~~/ga	ī/ ° [∃₹	/ ⁵⁷ /**/8	≆ / ∪ /
	- - 		/ ₹ /	- 	
			! 		
+ +			 	- - -	+
	- -		 		
	++		┾┼		+
	- - -		 	- - -	
		-+	 		-}}
			 		┴─ ┦
					∔ }
				_	+
	+				
			 		+
			 		1
	_ -		+++		
			 		
	+	- - 	┾		
	/ /=	/ / /	COLD VAPOR COLD VAPOR CYANIDE ANALYSES COLD VAPOR CYANIDE COLD VAPOR COLD VAP	COLD VARIOE COLD VARIOE COLD VARIOE COLD VARIOE COLD VARIOE COLD VARIOE COLD VARIOE ALL APPLICABLE COLD VARIOE ALL APPLICABLE COLD VARIOE ALL APPLICABLE COLD VARIOE COLD VARIOE ALL APPLICABLE COLD VARIOE COLD V	COLD VARIOR TALS COLD V

SUMMARY OF BLANK ANALYSES

(Highest values for each category) (Units = ug/l)

Case:			 	
SDGs:				
	 	 	 	_

	INITIA	CALIB. E	LANKS	CONT.	CALIB. B	LANKS	PR	EP. BLAN	KS	FIE	LD BLAN	KS
Metal	AQ SDG# MCXXX2	FILT SDG# MC	SOL SDG# MC	AQ SDG# MCKOL	FILT SDG# M.C.	SOL SDG# MC	AQ SDG# MCT02	FILT SDG# MC	SOL SDG# M C	AQ SPL# MC72-EY	FILT SPL# MC	SOL SPL#
Al		. /						1/		(15.1)		
As										5.4	P/	U/A
Sb		<u> </u>			<u> </u>			<u> </u>			10	7 17
Ва		$[\ \ \]$			Δ			Δ				
Вe								/ \				
Cd		1			,							
Ca				7.8						29.1)		
Cr												
Co												
Cu												
Fe										12.5		
РЬ												
Mg								·		(42.6)		
Mn												
Hg												
Ni												
Κ								,				
Se			2.2	2.3		2.5			2.2			
Ag												
Na												
TI	3.1		2.4	4.0		4.0						
V												
Zn				ļ						(5.8)		
				<u> </u>						<u> </u>		

Highest values for each metal (unfiltered aqueous and solids) are circled and are applied to all samples. FILT field blank results apply only to filtered samples.

Comments:

cricity

SUPPORT DOCUMENTATION for SDG MCJE02

includes (aqueous solid) samples

MCJE02-10, MCJE24

2B CRDL STANDARD FOR AA AND ICP

10/10/20

.b Name: KEYSTONE LAB-HOUSTON Contract: 68-D0-0147

Lab Code: KEYTX Case No.: 17744 SAS No.: SDG No.: MCJE02

AA CRDL Standard Source: EMSL-LV

ICP CRDL Standard Source: EMSL-LV

Concentration Units: ug/L

	CRDL S	tandard fo	r AA	11		CRDL Sta	andard	for ICP Fina	a l
Analyte	True	Found	%R	11	True	Found	%R	Found	%R
Aluminum_		!		-					
Antimony_;		1)	} }	120.0)	124.40	103.7	123.33	102.8
Arsenic	10.0	9.10	91.0		;		;		i
Barium) 	1	1 1	!		: :	!	i
(Beryllium)		 	}	11	10.01	10.36	103.6	10.08	100.8
{Cadmium}		1	}	; ;	10.01	10.28	102.8	10.28	102.8
Calcium		1	!	1:	!		!	}	!
{Chromium_{		}	;	; ;	20.00	19.35	96.8	20.84	104.2
(Cobalt)		!	1	; ;	100.01	103.49	103.5	100.28	100.3
pper!		1	1	1 1	50.0:	51.14	102.3	51.64	103.3
ticonl		l .	1	1 1	+		;	}	
:Lead:	3.0	2.40	1 80.0	1 1	1		! :		
Magnesium		;	;	1.1	!		;		
Manganese		;	;		30.01	31.00	103.3	30.10	100.3
Mercury		}	1	: :	;		!	}	ł
{Nickel;		}	;	1.1	80.0¦	85.81	107.3	70.36	87.9
Potassium		1	}	1 1	;		;		ł
Selenium_	5.0	: 5.20	104.0	; ;			;		1
Silver		!	;	; ;	20.01	19.36	96.8	19.06	95.3
Sodium		†	;	1 1	1		;	}	!
{Thallium_{		1	1	1.1	1		:	,	
[Vanadium_]		!	1	: :	100.01	101.70	101.7	101.70	101.7
Zinc		1	;	; ;	40.01	45.63	114.1	44.94	112.3
11		1	!	. 1 1 _	1		:		

3 BLANKS

b Name: KEYSTONE LAB-HOUSTON Contract: 68-D0-0147

Lab Code: KEYTX Case No.: 17744 SAS No.: SDG No.: MCJE02

Preparation Blank Matrix (soil/water): WATER

Preparation Blank Concentration Units (ug/L or mg/kg): ug/L

										;	1 1
-	Initial	1						1 1		{	1 1
1	Calib.	1	Co	nti	nuing Cal	ibra	tion	1 1	Prepa-	;	1
'	Blank	}		8.	lank (ug/:	(실		1 1	ration	1	: :
Analyte :	(ug/L)	CI	1	C	2	С	3	CII	Blank	C L	M
`` }		;						_ ; ;		_ ;	; ;
Aluminum_	14.0	Ū	14.0	łŨŧ	14.0	- ; Ū ; ·	14.0	Ü	14.000		
Antimony_{	30.0	: U :	30.0	: U :	30.0	: U :	30.0	1011	30.000	101	1P 1
Arsenic	2.0	101	2.0	l U l	2.0	101	2.0	IUII	2.000	l U l	F :
Barium	1.0	lU l	1.0	101	1.0	::::	1.0	:0::	1.000	l U I	P
Beryllium	1.0	U	1.0	: U :	1.0	: U:	1.0	IUII	1.000	lu:	P
Cadmium	3.0	101	3.0	101	3.0	101	3.0	1011	3.000	l U l	IP I
Calcium	7.0	:U:	7.0	lu:	7.0	:U:	7.0	1011	7,000	:U:	P
omium_{	3.0	101	3.0	:u:	3.0	: U :	3.0	1011	3.000	: U:	; P ;
(copalt)	4.0	(U)	4.0	:0:	4.0	:0:	4.0	1011	4,000	101	; P ;
Copper	3.0	101	3.0	t U t	3.0	: U:	3.0	1011	3.000	: U :	!P !
!Iron!	6.0	101	6. <i>0</i>	101	6.0	101	6.0	1011	6.000	HUT	:P :
Lead		:U:	1.0	IUI	1.0	101	-1.0	B	1.000	l U l	F :
!Magnesium:	37.0	; [] ;	37.0	:U:	37.0	: U :	37.0	1011	37,000	:::::::::::::::::::::::::::::::::::::::	; P ;
Manganese	2.0	! U !	2.0	101	2.0	: U :	2.0	:01:	2.000	:U:	:P :
!Mercury:	0.2	¦U¦	0.2	:U:	0.2	:U:	0.2	HUH	0.200	: U :	(CV)
Nickel:	22.0	:UI	22.0	lu:	22.0	; U;	22.0	:	22.000	l U I	1P :
Potassium	722.0	U	722.0	l U l	722.0	: U :	722.0	1017	722.000	; U ;	(P
Selenium_	2.0	: U :	2.0	101	2.0	U	2.3	BIV	2.000	!U!	if:
Silver	2.0	lu:	2.0	101	2.0	101	2.0	1011	2.000	l U I	1P :
{Sodium{	30.0		/ 30.0	l U l	30.0	: U:	30.0	1011	30.000	¦U¦	; P :
Thallium_	2.1	∃BI/	2.0	l U I	2.0	;U;	4.0	TBU	2.000	IU1	: F
Vanadium_		101	4.0	IUI	4.0	101		1011	4.000	101	1P 1
:Zinc			2.0	:UI	2.0	:U:	2.0	3011	2.000	lu:	IP ;
Cyanide	10.0	; U ;	10.0	:0:	10.0	101	10.0	1011	10.000		
		;;_		1_1		_		_;_;;		_	11

BLANKS

b Name: KEYSTONE LAB-HOUSTON

Contract: 68-D0-0147

Lab Code: KEYTX Case No.: 17744

SAS No.:

SDG No.: MCJE02

Preparation Blank Matrix (soil/water):

Preparation Blank Concentration Units (ug/L or mg/kg):

;	Initial	}						;	•			;
1	Calib.	;	Ca		uing Cal.		tion	;	Prepa-		11	ł
1	B1ank	1		B1	ank (ug/l	L)		;	: ration		11	!
Analyte	(ug/L)	C¦	1	C	2	C	3	C!	Blank	С	1 : M	1
		_ ! _						_ ;	!		11	;
Aluminum_		} }	14.0	101		+ +		1 1	1	-	P	;
{Antimony_{		; ;	30.0	101		1 1		;	ŀ	;	HP	1
Arsenic		1 1	2.0	1 U 1	2.3	B	2.0	UI	1	;	1 : F	;
Barium		1 1	1.0	!U!		1 1			l	Į	!!P	ţ
Beryllium		1 1	1.0	101		1 1		;	:	;	112	1
:Cadmium:		; ;	3.0	101/		; ;		: :	!	:	HP	!
Calcium!		1 1	7.8	BY		1 1		;	ì	ì	11P	;
comium_{		1 1	3.0	:0:		1 1		!!	<u> </u>	1		1
:Lubalt:		; ;	4.0	:0:		1 1		;	1	ļ	HP	1
:Copper:			3.0	{U}		; ;	1	: :	!		P	!
Iron		1 1	6.0	{U}		1 (: ;	<u> </u>	Į.	LLP	!
!Lead!		1 1	-1.2	B:	-1.5	(B)	-1.5	B;	!		!	:
:Magnesium:		; ;	37.0	:0:		1 1		: :	1	1	1 i P	!
:Manganese:		; ;	2.0	101					1		i i P	i
Mercury		; ;		1 1							1 1	ì
Nickel		! !	22.0	101					•	į	! P	
Potassium		1		101		1 1			•		i i P	!
Selenium				iu:	2.0	iui	2.0		•		l (F	
Silver			2.0			1 1					P	•
Sodium			30.0				:	. !	ž.		i i P	!
Thallium :		i	2.0		2.0	iui	2.0		•		;;F	•
Vanadium_			4.0	. — .		; ;	<u></u>				¦¦P	•
Zinc			2.0			1		,			P	i i
Cyanide			2.0	! !		1 !	!	, 			; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1
! !				!!					! !	,	! ! ! !	1

3 BLANKS

.b Name: KEYSTONE LAB-HOUSTON

Contract: 68-D0-0147

Lab Code: KEYTX Case No.: 17744 SAS No.:

SDG No.: MCJE02

Preparation Blank Matrix (soil/water):

Preparation Blank Concentration Units (ug/L or mg/kg):

1 1	Initial Calib.		 - - Co	nti	nuing Cali	bra	ation		: : : Prepa-		:	
:	Blank		1	E	Iank (ug/L)		1	: ration		ŀ	;
inalyte :	(ug/L)	С	1	c_	2	C	3	Ci	: Blank	С	ŀ	M
1 (_	· <u>-</u>	_				1	!		;	1
Aluminum_		. , –	'	; -;		; —		; -;	;	;-	ł	
Antimony_		1	!	;		!	;	} ;	1	1	ŀ	1
Arsenic		;	2.0	:0:		!	1	; ;	;	t	1	: F
Barium		+	1 1	: :		!	!	1 1	;	}	ł	!
Beryllium		}	!	; ;		ţ	!	; ;	:	;	;	-
Cadmium		}	!	; ;		1	1	; ;	1	}	ł	ì
Calcium;		}	<u> </u>	; ;		1	:	1 1	•	!	;	1
romium_{		1	;	; ;		1 1	<u> </u>	; ;	:	1	1	,
cupalt		1	<u> </u>	1 :		;	}	1 1	<u> </u>	}	1	!
Copper		;	;	1 ;		1	:	; ;	;		1	}
(Iron)		:	1	;		}	!	; ;	}	;	1	}
Lead		;	-1.7	181		;	<u> </u>	;	1	;	ļ	¦ F
Magnesium		;	!	1 1		!	15 -	; ;	1	}	1	}
Manganese		;	<u> </u>	: :		ļ	!	1 1	1	1	!	!
'Mercury:		;	1	; ;		!	}	1 1	1	ł	ţ	
lickel		ł	1	; ;		-	1		1	;	,	
TPotassium		Ì	t	; ;		}	:	1 1	-	;	;	;
Selenium_		1	1 2.8	B	2.0	۱U	2.0	i U i	1	1	}	۱F
Silver		1	;	; ;		:	;	;	1	1	;	
Sodium!		:	:	; ;		ŀ	:	1 1	;	;	1	
{Thallium_}		;	1	1 ;		!	!	; ;	1	;	1	
Vanadium_		;	!	1 1		}	;	-	;	;	}	
Zinc		;	†	; ;		;	!	; ;	1	1	ļ	
Cyanide		;	}	; ;		ŀ	;	1 1	1	;	1	
1!		-	1	;_:		! _	1	. _	!	!_	ļ	!

(- MA 16 1) $(\tilde{f})cv^{\dagger}$ U.S. EPA - CLP

ICP INTERFERENCE CHECK SAMPLE

ib Name: KEYSTONE LAB-HOUSTON

Contract: 68-D0-0147

Lab Code: KEYTX Case No.: 17744 SAS No.:

SDG No.: MCJE02

ICP ID Number: TJA61 ICS Source: EPALV90

Concentration Units: ug/L

!	; ;	True	Init	ial Found		 	inal Found	
1	Sol.		Sol.	Sol.		Sol.	Sol.	
•	. A	AB	A	ΑB	%R		AB	%R
1	1		}			 }		,
Aluminum_	540055	536472	4969821	498526.81	92.9	4907641	500246.41	93.2
Antimony_	;	ł	! 221	-49.41		251	7.5	:
Arsenic	! !		1	!	!	1	}	;
Barium	<u> </u>	502	121	456.3:	90.9	11:	456.1	90.9
Beryllium	;	480	1		98.5	1 1	474.21	98 .8 :
Cadmium		907	1 -21	868.8	95.8	-4;	873.0:	96.2
Calcium	494040	512228	503913	505909.1:	98.8	501572	508606.91	99.3 :
Chromium_	21	529	161	493.21	93.2	17!	493.21	93.2 :
{Cobalt	!	477	111	441.01	92.4	131	439.71	92.2 :
Copper	!	543	-201	528.81	97.4	-21:	531.3¦	97.8
i on	206236	199845	1881281	188247.7	94.2	1864321	188684.2	94.4
	:	1	!	1			;	:
Magnesium	:531358.	527530	515568	517732.01	98.i	1 5097091	519827.5	98.5
Manganese	34	496	-331	451.2	91.0	-341	454.31	91.6
Mercury	ļ .	!	1	;		! :	1	1
!Nickel	!	940	1 231	958. 5:	91.3	191	851.21	90.6
(Potassium)	!	!	-13121	-989.21	!	-13231	-1290.31	
:Selenium_	;	1	1	}		1	1	;
Silver	1 1	960	-381	859.8:	89.6	-361	863.31	89.9 :
Sodium	f	F J	17641	1767.71		1730	1760.61	;
Thallium_		ξ	! !	!	!	, ,	!	,
:Vanadium_	ł	: 50 9	1 331	481.3	94.6	331	486.91	95.6
Zine	216	1208	2181	1160.2	96.0	218	1165.7	96.5
!	!	,	!!	;		;;	!	

FORM IV - IN

5A SPIKE SAMPLE RECOVERY EPA SAMPLE NO.

ab Name: KEYSTONE LAB-HOUSTON Contract: 68-D0-0147 !______

Lab Code: KEYTX Case No.: 17744 SAS No.:

SDG No.: MCJE02

Matrix: WATER

Level (low/med): LOW

% Solids for Sample: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

	Control	 		 		
•		Spiked Sample	Sample	Soike :		1 1
'Analyte		Result (SSR) C	•	Added (SA)	%R	IQIM I
	!	11				1_1_1
:Aluminum_	75-125	2681.00001	1089.62001	2000.00	79.6	P
Antimony_	75-125	447.98001 (30,0000 U	500.00	89.6	P
(Arsenic)	75-125	[50.4000] {	7.2000(B	40.000	108.0	1 (F)
Barium	75-125	! 1764.9399! :	65.3500¦B:	2000.001	85.0	P
Beryllium	75-125	47.1700	1.0000:U	50.00	94.3	P
Cadmium	75-125	46.62001	3.0000{U}	50.001	93.2	
Calcium	;	1 1	1	!		INRI
Chromium_	75-125	177.72001 3	3,0000;U	200,003	88.9	1 (P)
'balt		442.8800	4.00001U	500.00	88. 6	;
Lupper	75-125	1 226.93001 1	4.9600¦B	250.001	38. 8	
/Iron	175-125	1 2252.95001 1	930 <u>.44001</u> 9	R¥ 5A 1000.001	132.20	KNIP
Lead	75-125	19.7000	1.1000 B	20.00	93.0	F
Magnesium	ļ	1	;	†		I INR
Manganese	75-125	495.6600	51.6700{	500.00	38 . 8	; ;P ;
Mercury	175-125	1.0000	0.2000 U	1.00	100.0	1 1C21
!Nickel	75-125	441,9000	22.0000:0	500.00	38.4	F
Potassium	;	1 1	1	;		NR
Selenium_		10.6000	2.000010	10.00	106.0	1 !F :
Silver		41.9400; ;	2.0000;U	50.00	83.9	; ;P;
Sodium		: :	1			INRI
:Thallium_	75-125	50.8000	2.000010	50.00	101.6	F
Vanadium_		1 442.83001 1	4.000010	500.001	88.6	1 1P 1
{Zinc	75-125	477.73001 1	27.6800;	500.00	90.0	1 18 1
:Cyanide:	75-125	97.1700	10.0000 U	100.00	97.2	AS
1		[!_!_	[_	!!		. [_ []

COMME	U3.		

্রভারতারিক ্রাক্

Metals Se, As IDIS 2,2 ugle

17744 SPGMCJEOZ

U= < IDL Graphite Furnace Spike Recovery Evaluation Form

Sample ID	Instr. Level Result 119/1	PDS Recovery	Diluted Result	Diluted (%) Recovery	(if needed)	Final Result Reported
MCTE02	6.2	55			20 leur	2.00
03	NO	105				2u -
04	2.8	55	<u> </u>		ND	2UV
05	2.0	9.4				2.01
06	2.0	107				2.0
07	49 NO	108				211-
070	ND	94	<u> </u>			211-
०७८।	10.6		<u> </u>			106 7
08	ND	93				24
09	2.8	81	2.5	86		2.5V
10	3.3	78				
24	NP	87				!
MCJEU2	10.8	106				50.8V 5.5V
03	5,6	132	WOU.	8.6		8-1-
04	5.8	107				5.5V
05	6.8	101				6.50
06	7.2	10.5				7.20
07	7,2	94				7.2 V
OLO		99				6-6-
০০১	50.4	<u> </u>				108 %
<u>()%</u>	8.9	104				8.9 1
09	6.7	107				6.7~
10	6.4	89				6.4
24	5.4	82				5.40

Se

AS

Metals Pb. T-1

IDIS 1,2 ugle

U= < IDL Graph

17744 SPGMCJEOZ

Graphite Furnace Spike Recovery Evaluation Form

	,	····	1	<u> </u>			7
Sample ID	Instr. Level Result 119/1	PDS Recovery	Diluted Result	Diluted PB Recovery	MSA Result (if needed)	Final Result Reported	100
MCJE02	NO	94	,			111	I
03	NO	104					
04	ND	108					
05	ND	120				V	
06	22	119.			9.5×2	19.0-	23.5
07	1,1	106				101 /	
071)	1.5	111				1.5 V	ł.
075	19.7		<u> </u>	<u> </u>		93 7	(85%
- 08	59.9	97				59.9	73.5
09	N.D	100			· · · · · · · · · · · · · · · · · · ·	111	ļ
10	2.7	105				270	ļ
24	NO	98			<u> </u>	14	
						<u> </u>	
MCTEU2	NO	105				24	ļ
03	NU	104		<u> </u>			
04	ND	108					
05	NO	104					
06	NQ	10:5					
07	ND	ioo					
070		109				10-5	
250	50.8	(4.6				102%	
() <u>K</u>	NO	108				24	
04	NA	(05					•
[0]	(7)	10 ===					
24	NO	10,5		<u> </u>		4	
	·						
			,	1			

.

TI

pb 100 101 = 25 ug/4

CHOCHRAL

Wed. U.S. EPA - CLP

EPA SAMPLE NO.

POST DIGEST SPIKE SAMPLE RECOVERY

.b Name: KEYSTONE LAB-HOUSTON Contract: 68-D0-0147 :____

Lab Code: KEYTX Case No.: 17744 SAS No.:

SDG No.: MCJE02

Matrix (soil/water): WATER

Level (low/med): LOW

Concentration Units: ug/L

 - - Analyte 	 Control Limit %R	 - Spiked Sample Result (SSR) 	C	Sample Result (SR)	C	 Spike Added (SA)	%R		
Aluminum_	!	!	1		!	!			INRI
Antimony_		;	1 1		1	!		<u> </u>	INR
Arsenic		 	1 1		1	! !		ł	INR!
Barium		¦	; ;		;	;		1	INRI
:Beryllium	;	1	1 1		1	!		ì	:NR:
Cadmium		1	; ;		i i	:		ł	INRI
Calcium	:	!	1 1		:	1		;	INRI
:Chromium_:	;	¦				}		;	INRI
Cobalt	:	ł			1 .	l (1	INRI
Copper	;		1 :		1	!		1	INRI
:Iron		! 2885.46	1 1	930.44	1	1900.0	102.9	;	!P :
: \d	;	¦			;	;		1	INRI
liagnesium	t .	!	1 1		1 :	(ţ	:NR!
!Manganese	;	!	1 :		1	 		;	INRI
!Mercury:		!	1 1		1	l :		!	INRI
Nickel	;	i	1 1		1 1	;		1	INR I
Potassium	!	!	1 1		1 1	;		1	INRI
Selenium_		{	1 1		1 1	;		ļ	INRI
Silver	!	1	1 1		;	!		;	INRI
Sodium	;) 	1 1		1 1	!		}	INRI
Thallium_		ļ	1 1		1 1	!		i	INR:
Vanadium_	!	!	1 1		: :	ł :		ľ	INRI
!Zinc	ļ ;	ł I	1 1		} }	\		}	INRI
Cyanide	1 1) }	1 1		1 1	!		;	INRI
1	!	<u> </u>	!_!		1_1	¦;		!_	! i

omments:	
·	

FORM V (PART 2) - IN

DUPLICATES

EPA SAMPLE NO.

.b Name: KEYSTONE LAB-HOUSTON Contract: 68-D0-0147 |_____

Lab Code: KEYTX Case No.: 17744 SAS No.:

SDG No.: MCJE02

Matrix (soil/water): WATER

Level (low/med): LOW

% Solids for Sample: 0.0

% Solids for Duplicate: 0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

ì	1.1	11				1 1	ţ
; Co	introl ()	11		1 1		; ;	1
Analyte L	imit	Sample (S) Cit	Duplicate (D)	CII	RPD	; ; C	H
	[{{_		[]	_
Aluminum_	1.1	*			2.3		18
Antimony_!	1.1	30. 0000(U))	30.0000	1011			18
Arsenic!	1 1	7.2000(B);	6.6000	:B::	8.7	1 1	F
Barium!	1.1	65.3500;B;;	66.0400	1B;;	1.1	; ;	; P
Beryllium!	1 1	1.0000(U);	1.0000	: U::		1	ΙP
Cadmium!	11	3.0000:0::	3.0000	1011		1	¦ P
Calcium! 5	0000.0 11	14513.1201; ;;	14709.2402	1 11	1.3	1 1	1P
Chromium_!	1 1	3.0000 U	3.0000	1011		1 1	1 P
Cobalt	1:	4.0000;U::	4.0000	U		: !	#P
Copper!	11	4.9600(B)	4.4600	(B) :	10.6	1 1	; P
301	11	930.44001 11	926.0000	1 11	0.5	11	: F
Luad	1.1	1.1000(B);	1.5000	(B) (30.8	1 1	¦ F
Magnesium: 5	000.0	5787.0801; ;;	5925.9600	1 11	2.4	; ;	; P
Manganese!	15.0	51.6 7001	52.1200	1 11	0.9	1 1	; P
Mercury!	11	0.2000;U::	0.2000	1011		1 1	10
Nickel	; ;	22.0000(U):	22, 0000	1011		1 1	P
Potassium:	11	2268.8101(8)	2322.5701	(B):	2.3	11	;P
Selenium_;	; ;	2.0000(U):	2.0000	::::		; ;	۱F
Silver:	11	2.0000;U;;	2.0000	:U::		: :	; P
Sodium/ 5	0000.0 44	6152.1001	6300. <i>779</i> 8	1 11	2.4	1.1	1 P
Thallium_:	11	2,0000;U;;	2.0000	1011		::	۱F
Vanadium_;	1.1	4.0000;U;;	4.0000	; ; ; ;		; ;	; P
Zinc	20.0 11	27.68001 11	2 7.63 00	1 11	0.2	; ;	;P
Cyanide!	1 1	10,0000;81;	10.0000	: : : :		: :	ŀΑ
				; ;;		_	1

STANDARD ADDITION RESULTS

36 Name: KEYSTONE LAB-HOUSTON

Contract: 68-D0-0147

Lab Code: KEYTX Case No.: 17744 SAS No.:

SDG No.: MCJE02

Labreportedos 24 not 2 ugle

Concent	ration	Units:	ug/L
---------	--------	--------	------

Sample An O ADD 1 ADD 2 ADD 3 ADD Final No. ABS CON AB							/		
No. ABS CON ABS CON ABS CON ABS CONC. P. 10.0010.062 15.0010.080 9.5 0.3993 MCJE02 SE 0.017 5.0010.027 10.0010.052 15.0010.091 2.00.3672 + 1 MCJE02 SE 0.007 5.0010.025 10.00 0.050 15.0010.04D MCJE03 SE 0.005 5.0010.040 10.0010.070 15.0010.115 0.5 0.3965 V MCJE03 SE 0.005 5.0010.020 10.0010.043 15.0010.065 0.7 0.9961 MCJE04 SE 0.003 5.0010.038 10.0010.055 15.0010.130 Mr. 10.0010.055 15.0010.130 Mr. 10.0010.055 15.0010.053 3.7 0.9446 + 1 MCJE04 SE 0.011 5.0010.024 10.0010.053 15.0010.053 3.7 0.9446 + 1 MCJE07 Mr. 10.0010.055 15.0010.053 3.7 0.9446 + 1 MCJE07 Mr. 10.0010.055 15.0010.055 15.0010.055 3.7 0.9446 + 1 MCJE07 Mr. 10.0010.055 15.0010.055 15.0010.055 3.7 0.9446 + 1 MCJE07 Mr. 10.0010.055 15.0010.055 15.0010.055 3.7 0.9446 + 1 MCJE07 Mr. 10.0010.055 15.0010.055 15.0010.055 3.7 0.9446 + 1 MCJE07 Mr. 10.0010.055 15.0010.055 15.0010.055 3.7 0.9446 + 1 MCJE07 Mr. 10.0010.055 15.0010.055 15.0010.055 3.7 0.9446 + 1 MCJE07 Mr. 10.0010.055 15.0010.055 15.0010.055 3.7 0.9446 + 1 MCJE07 Mr. 10.0010.055 15.0010.055 3.7 0.9446 + 1 MCJE07 Mr. 10.0010.055 15.0010	EPA	!	1) 	1	!	! /	1	}
MCJE06 PB 0.031 5.00 0.047 10.00 0.062 15.00 0.080 9.5 0.3993 MCJE02 SE 0.017 5.00 0.027 10.00 0.052 15.00 0.091 2.0 0.9672 + MCJE02 SE 0.007 5.00 0.025 10.00 0.050 15.00 0.04 0.5 0.8670 + MCJE03 SE 0.005 5.00 0.040 10.00 0.070 15.00 0.115 0.5 0.9965 V MCJE03 SE 0.005 5.00 0.020 10.00 0.043 15.00 0.065 0.7 0.9961	: Sample	l An	O ADD	1 ADD	l 2 ADD	: 3 ADD	: Final	1	}
IMCJE02 SE(0.017) 5.00 0.027 10.00 0.052 15.00 0.091 2.0 0.9672 + 1	No.		ABS	! CON ABS	I CON ABS	CON ABS	: Conc.	1 r 10	7 ;
IMCJE02 SE(0.017) 5.00 0.027 10.00 0.052 15.00 0.091 2.0 0.9672 + 1	!	!	! ;	<u> </u>	_	-	1	!!	_ !
MCJE02 SE 0.007 5.00 0.025 10.00 0.050 15.00 0.04 0.5 0.8670 +	MCJE06	1 PB	0.031	1 5.0010.04	71 10.0010.06	2: 15.00:0.080	: \ 9.5	10.99931	+ /
MCJE03 SE 0.005 5.00 0.040 10.00 0.070 15.00 0.115 0.5 0.9965 V MCJE03 SE 0.005 5.00 0.020 10.00 0.043 15.00 0.065 0.7 0.9961 V MCJE04 SE 0.003 5.00 0.038 10.00 0.055 15.00 0.130 My 0.5 0.9535 + V MCJE04 SE 0.011 5.00 0.024 10.00 0.054 15.00 0.054 3.7 0.9446 + MCJE04 SE 0.011 5.00 0.024 10.00 0.054 15.00 0.054 3.7 0.9446 + MCJE05 Sumples NO Not 46 + MCJE05 OR and DU Samples MCJE05 OR and DU Samples MCJE05 OR and DU Samples MCJE05 OR and DU Samples MCJE05 OR and DU Samples MCJE05 OR and DU Samples MCJE05 OR and DU Samples MCJE05 OR and DU Samples MCJE05 OR and DU Samples MCJE05 OR and DU Samples MCJE05 OR and DU Samples MCJE05 OR and DU Samples MCJE05 OR and DU Samples MCJE05 OR and DU Not have MCJE05 OR and DU Not have MCJE05 OR and DU OR and D	:MCJEO2	;SE	0.017	5.00:0.02	7: 10.00:0.05	21 15.0010.091			
MCJE03 SE 0.005 5.00 0.020 10.00 0.043 15.00 0.065 0.7 0.9961	MCJE02	:SE(0.00Z	/ 5.00:0.02	5: 10.00kg.05	15.00:0.041	# 1 W/ 4 E	10.86701	+
MCJE04 SE 0.003 5.00 0.038 10.00 0.055 15.00 0.130 14 0.5 0.9535 + V MCJE04 SE 0.011 5.00 0.024 10.00 0.054 15.00 0.054 3.7 0.9446 + V Sample is ND not 4.6 not 4.6 are putable will samples are putable will samples	MCJEO3	SE	0.005	∖ 5.00:0.04	01 10.0010.070	0: 15.00:0.115	0.5	10.99651	V.
MCJE04 SE 0.011 5.00 0.024 10.00 0.054) 15.00 (0.054) 3.7 (0.9446) + RSame Sample is ND not 4.6 are putable well samples are putable will samples	MCJE03	SE	(0.005)	: 5.00:0.02	0: 10.00:0.04:	3: 15.00:0.065	1 0.7	10.99611	1
Sample is ND med to 2, 08, and DU not 4.6 are putable well samples	MCJE04	SE	10.003	:\ 5.00:0.03	8: 10.00:0.05	5: 15.00:0 <u>.13</u> 8	€~119h 0.5	10.953514	FI 🗸 🚿
sample is ND, not 4.6 med to samples are putable well samples	MCJE04	SE	0.011	:\ 5.00:0.02	41 10.001 0.05	r) 15.00(0.054	3.7	10.944614	+
sample is ND, not 4.6 med to samples are putable well samples	1	1	!		1		!	1	f
sample is NB not 466 metters, and DH samples and should not have and should not have and should not have serious matrix effects. This complete with suggest and the suggest and the hard must suggest and the hard must must find the chain or misspilling.	!	!	100	177 Summer	1	Rama	1	1	1
not 4.6 me potable well samples and should not have and should not have sections matrix effects. sections matrix effects. sections matrix response could errathe response could suggest analytical matspiking.	;	;			1		411	;	}
not 4.6 are potable well samples and should not have and should not have serious matrix effects. serious matrix effects. serious matrix effects. serious matrix effects. serious matrix effects. suggest analytical suggest analytical musspiking.	1	1			1 1 m/	TED, 03, and 6	14	1	1
and should not have and should not have serious matrix effects. Serious matrix effects. Serious matrix effects. Serious matrix effects. Serious matrix effects. Serious matrix effects. Serious matrix effects. Serious matrix effects. Serious matrix effects. Serious matrix effects. Serious matrix effects. Serious matrix effects. Serious matrix effects. Serious matrix effects. Serious matrix effects. Serious matrix effects. Matrix possible and with the serious could effect the serious effects. Matrix private matrix effects. Matrix private matrix effects. Matrix private matrix effects. Matrix private matrix effects. Matrix private matrix effects.	1	1	: / nóti	74.6 Y	; ; ; ~		100 Suma	Seo :	1
and should not have and should not have serious matrix effects. Serious matrix effects. This, compled with errate response could errate response could include and the chian or including.	1	!	(1	- while w	per surry	1	†
and should not service effects. services matrix effects. This, complete with errator response could errator response and phad suggest and phad multiments or misspiking.	1	ł t	; ;	1		me porque	1 + have	,	ł
serious matrix effects. This, complete with errate response could errate and theat subject and theat must spilling.		;	i	}	1 1	hould	1/10	1	1
sertous material with This complete with errata response could errata response could subject and phat must spiking.	!	;	1 1	!	1 ;	I and store	Meet	١,	1
This, compled with enable response, could enable response, could enable and threat and t	ł	!	:		1 1	+ cections that	11× 41.	₹. +	1
errate response could errate response could errate response sould subject and threat and threat and threat and threat are misspiking.	1	ł	;	<u> </u>		1	lin hel	r :	1
errate response, count suggest analytical suggest analytical malturition or masspikering.	1	}	:			11.14 00	the former		1
suggest and phrale malphral misspitang.		1	i i	!	1	1 '1 '	NO SOUND	Court	1
multinchion or misspillang.	1	<u>.</u>	•	i	i i	enal		12.	1
multiples on misspiking.	i		i i	i i	i i	i i	t and	YTHUR !	i
mal function or misspilling.			i .	i i	i	Su	440	f ;	; ` `
malning.	i		i i	i i	i i	i i	y, (, h)	mo	i
mis spiking.	i I	i i	i I	i i	i i	i i	mu (nuncon	4' ;	i I
m 15 Splitter	i	i	j i	i i	į į	i i	des	i i 4	į į
	i	j i	i .	j j 1 1	j ;	i i	1413.20 MAN	J :	i 1
	1	i	1	i I	1 1	1 i	1	1 1	1
	ł •		1	1 1	1 1	1 1	1	1 1	1
	1	1	ı ı	l (! ! !	! !	!	· · · · · · · · · · · · · · · · · · ·	! !
	1	1	1 2	1 1 1 1	1 1 1	· · · · · · · · · · · · · · · · · · ·	1	i i	,
	1	1	1	! ! !	1 1		1	i i	!
	1	!	!)	!!!	!!!	<u> </u>	!!!	!

FORM VIII - IN

ICP SERIAL DILUTIONS

EPA SAMPLE NO.

"b Name: KEYSTONE LAB-HOUSTON Contract: 68-D0-0147 |

Lab Code: KEYTX Case No.: 17744 SAS No.:

SDG No.: MCJE02

Matrix (soil/water): WATER

Level (low/med): LOW

Concentration Units: ug/L

1			11 % 11 1	
1 11	Initial Sample :	: Dilution	{{Differ-{{ }	
Analyte	Result (I) C:		Cll ence !!Q!M :	
Aluminum_		822.15	B 24.5 E P	
Antimony_	30,00 (U)	150.00	IUII II IP I	
Arsenic	1 1	!		
Barium	65.35 B	1 65.70		
Beryllium	1.00 U	5.00	U	
Cadmium	3.00 (U)	15.00	(U))	
Calcium	14513.12	15280.20	1B:: 5.3 :: :P :	
Chromium_	3.00 U;	15.00		
Cobalt			U	
Copper	4.96 B			
ilron ii			1 11 (17.5) IEIP	
Lead	1 1	1	I II INRI	
:Magnesium :	5787.08 : :	6042.40		
Manganese	51.67	51.65	(B) 0.0 P	
Mercury	1 1	1	I II II INRI	
Nickel	22.00 (8)	110.00		
★ !Potassium !!	2268.81 (B)	4408.55	1811	h X
Selenium_			I II INRI	
	2.00 (8)	10.00	(U)	
		6433.75	B 4.6 P	
:Thallium_ !!			I II II II INRI	
:Vanadium_ :				
Zint			B 174.4 P 0	The best was
				(12)

K. (SI) KIDL, NO ampact

ORIGINAL (Red) U.S. ÈPA - CLP

10 Instrument Detection Limits (Quarterly)

Ab Name: KEYSTONE LAB-HOUSTON

Contract: 68-D0-0147

Lab Code: KEYTX Case No.: 17744 SAS No.:

SDG No.: MCJE02

ICP ID Number:

Date: 02/18/92

Flame AA ID Number:

Furnace AA ID Number: PE3030Z

		:			1
<u>;</u>	Wave-	i i			
i	_		CRDL	IDL	; ;
Analyte	(UM)	ground	(ug/L)	(ug/L)	i Mi
1]			!;
:Aluminum_:			1200	}	INR
Antimony_:		}	160	}	INRI
Arsenic			10		INR
Barium		1	200 :	}	INRI
Beryllium		!	15	1	INRI
Cadmium	}		15		INR
Calcium	!	. :	5000		INRI
!Chromium_!		}	110	}	INRI
Cobalt		; ;	50 ;		INRI
Copper			25	}	INR
:Iron	;	:	100		INRI
Lead		;	3 :	}	INRI
:Magnesium:		: :	5000		INR
!Manganese:	·	;	15 ;		INR
Mercury		!	0.2		INRI
Nickel	!	!	40 :		INRI
:Potassium:	·	;	5000		:NR:
Selenium		} ;	5 ;		INRI
Silver			10		NR!
Sodium			5000 (INRI
:Thallium_:			10	2.0	
Vanadium			50	_	NR:
Zinc			20 :		INRI
!					1 1
''			''		' '

10 Instrument Detection Limits (Quarterly)

_b Name: KEYSTONE LAB-HOUSTON Contract: 68-D0-0147

Lab Code: KEYTX Case No.: 17744 SAS No.: SDG No.: MCJE02

ICP ID Number: TJA61

Date: 02/10/92

Flame AA ID Number:

Furnace AA ID Number:

· ·		 !	!	- 	
:	Wave-				
			CRDL	IDL.	
Analyte :				(ug/L)	M
!			1		1
Aluminum_	308.20		200	14.0	; P ;
Antimony_			60	30.0	
Arsenic			10		INRI
Barium			200	1.0	
Beryllium			5	1.0	P
Cadmium			15	3.0	(P)
Calcium			5000	7.0	P :
(Chromium_			10	3.0	(P)
Cobalt			50	4.0	:P :
Copper			125	3.0	; P ;
:Iron			100	6.0	IP I
Lead			13	!	INR
Magnesium	279.00	!	5000	37.0	! P !
:Manganese:	257.60	1	15	2.0	:P :
Mercury:			0.2	1	INR
Nickel	231.60	!	140	22.0	IP :
(Potassium)	766.40	{	(5000	722.0	(P (
Selenium_		¦	15	;	INR!
Silver	328.00	!	110	2.0	:P :
Sodium	5 88. 90	1	15000	30.0	IP I
<pre> {Thallium_;</pre>		•	10	!	INR I
Vanadium_			150	4.0	P
Zinc	213.80	ł	120	2.0	; P :
1;					! !

Comments:			
	. ۔ ۔ نہ ۔ رہ سے ہی ت	 ~	
	•	 	

PRIGINAL (Red)

U.S. EPA - CLP

10 Instrument Detection Limits (Quarterly)

Ab Name: KEYSTONE LAB-HOUSTON

Contract: 68-00-0147

Lab Code: KEYTX Case No.: 17744 SAS No.:

SDG No.: MCJE02

ICP ID Number:

Date: 02/14/92

Flame AA ID Number:

Furnace AA ID Number: PE580

					
: : :Analyte	-	: Back- ground 	CRDL (ug/L)	IDL (ug/L)	
Aluminum_ Antimony_ Arsenic_ Barium_ Beryllium Cadmium_ Chromium_ Chromium_ Copper_ Iron_ Lead Magnesium Manganese Mercury_ Nickel Potassium Selenium_ Silver Sodium Thallium_ Vanadium_ Zinc	2 83. 30	BD	200 60 10 200 5 5 5000 10 25 100 15 0.2 40 5000 15 5000 10 5000	1.0	

Comments:			

10 Instrument Detection Limits (Quarterly)

,b Name: KEYSTONE LAB-HOUSTON Contract: 68-00-0147

Lab Code: KEYTX Case No.: 17744 SAS No.: SDG No.: MCJE02

ICP ID Number: Date: 01/15/92

Flame AA ID Number: MASSOA

Furnace AA ID Number:

1			7	}	1
1	Wave-	!	;	}	; ;
1 1	length	Back-	CRDL	IDL	; ;
Analyte	(mm)	ground	(ug/L):	(ug/L)	! M!
!;		;	!	!	;;
{Aluminum_;			200		:NR:
Antimony_		¦	160		INRI
Arsenic		;	10		INR
Barium		;	1200	}	INRI
Beryllium		!	:5	1	INR
Cadmium	}		! 5	1	INRI
Calcium;		!	5000	1	INR
(Chromium_)	}	!	10	1	INR
(Cobalt	1	'	:50	}	INR
:Copper	!	!	125	}	INR
::Iron:	}	!	100	ł	INRI
!Lead	!	}	13	¦	INR
:Magnesium:	}	}	5000	;	:NR:
:Manganese:	}	!	15	;	:NR:
(Mercury)	253.70	:	0.2	0.2	(CV)
(Nickel	}	;	40	<u>:</u> 1	INRI
Potassium	1	1	15000	i	INR
Selenium_	}	!	15	1	INR
:Silver:		ļ	10	!	INR I
Sodium		}	15000	;	INR
Thallium_	}	ŀ	110	-	INRI
(Vanadium_	{	1	(5 0	1	INRI
Zinc	•	;	120	}	:NR:
1	'	!	!	;	11

-	
	Comments:

Raga

Ted U.S. EPA - CLP

Instrument Detection Limits (Quarterly)

Ab Name: KEYSTONE LAB-HOUSTON

Contract: 68-D0-0147

Lab Code: KEYTX Case No.: 17744 SAS No.:

SDG No.: MCJE02

ICP ID Number:

Date: 02/22/92

Flame AA ID Number:

Furnace AA ID Number: TJASH21

!			!		
;	Wave-	' }			
•		· Back-	CRDL	IDL.	
Analyte		ground			M:
1	1	!		L	
Aluminum			200		NR
Antimony_			160		NR:
Arsenic		BS	10	2.0	F :
Barium			200		NRI
Beryllium		ì	! 5		NR!
Cadmium		}	: 5	1	NR
Calcium	}	!	5000	!	NR!
Chromium_		!	10	}	NR
{Cobalt		ł	150	}	NR I
Copper		!	25	1	NRI
!Iron		!	100		NRI
Lead	}	}	13	}	INRI
Magnesium		<u> </u>	5000	İ	NRI
:Manganese		!	15	1	NRI
Mercury		!	0.2	!	NRI
!Nickel] }	140	i I	INRI
:Potassium:	}	!	5000	}	NRI
Selenium	196.00	85	5	2.0	F:
Silver			10		NR!
Sodium		<u>;</u>	5000	}	NRI
Thallium		}	10		NR
:Vanadium_			50		NR
Zinc			20		NRI
}		ļ !		}	

omments:	
به به _ه ه ه ه به به به به به به به به به به به	

SUPPORT DOCUMENTATION for SDG MCJE! includes (aqueeus, solid) samples M(JE-11-23, 24

28 CRDL STANDARD FOR AA AND ICP

Lab Name: KEYSTONE LAB-HOUSTON

Contract: 68-D0-0147

Lab Code: KEYTX Case No.: 17744 SAS No.:

SDG No.: MCJE11

AA CRDL Standard Source: EMSL-LV

ICP CRDL Standard Source: EMSL-LV

Concentration Units: ug/L

	CRDL S	tandard fo		•	CRDL Sta	andard f		
		_	-	1	Initial		Final	
Analyte !	True	Found	%R ;	True	Found	%R	Found	%R
i Aluminum_;		!	- <u>; </u>	<u> </u>			 ;	
Antimony_:			i	120.0	122.02	101.7	121.0711	00.9
Arsenic		9.30	93.0	1				
Barium		ŧ		;	;		,	
Beryllium:		;	1 1	10.0	9.98	99.8:	9.74:	97.4
Cadmium:		ŀ	1 1	10.01	8.88	88.81	10.7811	07.8
Calcium;		1	1 1	1	1	1	1	
Chromium_:		1	1 1	20.01	20.26	101.3:	20.26:1	01.3
ˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈˈ		!	1	1 100.01	98.26	98.31	95.35!	95.3
اا		;	1	1 50.03	51.14	102.31	48.77:	97.5
Iron		!	1 1	1 1	}	1	1	
Leadi	3.0	3.10	1 8.8011	1	1	!	;	
Magnesium:		;	1 1	1 1	;		:	
Manganese:		1	1	30.01	29.28	97.61	28.86:	96.2
Mercury!		1	1 1	1 1		!	1	
Nickel		1	+ +	80.0	76.18	95.2:	81.63 1	02.0
Potassium:		ŧ	-{	1 1	;	:	1	
Selenium_:	5.0	6.40);128.0 ;	· ·	1		1	
Silver		1	1 1	1 20.01	18.58	92.9:	16.891	84.4
Sodium;		}	1 1	: ;	;	;	1	
Thallium_¦		11.90	– –	1 :	;	1	1	
Vanadium_¦		1	=	1 100.01		98.61		
Zinc¦		1		40.01	43.11	107.8:	42.57:1	06.4

3 BLANKS

Contract: 68-D0-0147

Lab Code: KEYTX Case No.: 17744

SAS No.:

SDG No.: MCJE11

Preparation Blank Matrix (soil/water): SOIL

Lab Name: KEYSTONE LAB-HOUSTON

1	<u></u>	;	· · · · · · · · · · · · · · · · · · ·					11	<u> </u>	11
1	Initial	1						11		
1 1	Calib.	1	Co	ontir	nuing Cal	ibrat	tion		Prepa-	
!	Blank	:			lank (ug/			11	ration	11
→Analyte :	(ug/L)	C:	1	ε	2	C	3	CII		сіім
1	l	!						; ;		1 1
Aluminum_	14.0	IU!	14.0	- Ū -	14.0		14.0	ווטור	2.800	:U::F
Antimony_	30.0	:U:	30.0	:UI	30.0	101	30.0	1011	6.000	(U) (P
Arsenic		:U:	2.0	: U :	2.0	¦U;	2.0	1011	0.400	:U:IF
:Barium:	1.0	: U :	1.0	:U:	1.0	101	1.0	:0::	0.200	HUTTP
: Beryllium	1.0	101	1.0	101	1.0	: U:	1.0	1011	0.200	IU I IP
Cadmium		101	3.0	101	3.0	101	3.0	1011	0.600	(U) (P)
Claim			7.0	¦U¦	7.0	iu:	7.0	1011	1.400	IUI IP
, k comium_:	3.0	:0:	3.0	¦U¦	3.0	:01	3.0	1011	0.600	(U) (P)
Cobalt	4.0	iu:	4.0	:0:	4.0	: U:	4.0	1011	0.800	IU I IP
(Copper	3.0		3.0	:U:	3.0	: U :	3.0	1011	0.600	IU: IP
Iron	6.0	:U:	6.0	: U:	6.0	:U:	6.0	iu::	1.200	HULLE
' Lead	1.0	:U:	1.0	: U :	1.0	101	-1.0	B	0.200	IUHF
:Magnesium:	37.0	101	37.0	101	37.0	181	37.0	1011	7,400	(U) (P)
Manganese		101	2.0	:U:	2.0	101	2.0	1011	0.400	IU: IP
Mercury;	0.2	lu l	0.2	101	0.2	:U:	0.2	1011	0.100	TULLCY
√Nickel	22.0	101	22.0	101	22.0	IU!	22.0	10:1	4,400	IU HP
Potassium		IU I	722.0	iu:	722.0	(8)	722.0	1011	144,400	iu i if
Selenium_		¦B ∜ ∕	2.4	BT	2.0	101	2.5	1BU	0.540	IB! IF
Silver;		lu i	2.0	:U:	2.0	:U:	2.0	1011	0,400	1U P
Sodium	30.0	101/	30.0	10:	30.0	101	30.0	1011	6,000	IU (IP
:Thallium_:		IBI	2.0	:U:	2.0	:U:	4.0	HB M	0.400	
:Vanadium_:		:U:	4.0	101	4.0	101	4.0	1011	0.800	
Zinc	2.0	101	2.0	101	2.0	:u:	2.0	1011	0.400	
Cyanide	10.0	101	10.0	: U :	10.0	: U :	10.0	1011	0.500	IU!!AS
\	<u></u>	_		_		_ _ _		_1_11		1_11

BLANKS

Lab Name: KEYSTONE LAB-HOUSTON

Contract: 68-D0-0147

Lab Code: KEYTX

Case No.: 17744 SAS No.:

SDG No.: MCJE11

Preparation Blank Matrix (soil/water):

1	<u> </u>	<u></u>			<u> </u>						; ;	-
1	Initial	1						i				
1	Calib.	1	Co	ont i	inuing Cal	ibra	tion	1	Prepa-			1
1	Blank	ŀ			Blank (ug/			ł	-		1 1	Ι 🛴
Analyte	(ug/L)	C:	1	C	2 ~	C	3	C:	Blank	C	II M	1
11		!						!			: !	ļ
Aluminum_		1	14.0	HU		1 1		1 1		_ _	HP	•
Antimony_		; ;	30.0	ΙU	i	1 8		1 1		1	1 1P	1
Arsenic		1 1	2.0	:U	2.3	B	2.0	101	}	1	: IF	i i
Barium		1 1	1.0	١U	•	1 1		1 1	}	+	: IP	1
Beryllium		; ;	1.0	↓U∶		1 1		; ;	}	1	1 IP	ŀ
Cadmium			3.0	lU.		- 1 1		1 1	}	- 1	i iP	ŀ
ir leium_:			7.0	101	!	: :		1 1		1	: :P	1
Lcomium_		; ;	3.0	ŧυ	1	+ +		1 1	}	ŧ	:	<u> </u>
Cobalt		: :	4.0	10		;		1 11	}	- }	: IP	1
Copper;		: :	3.0	١U:	1	1 1		1 1	ŀ	ł	HF	1
Iron		: :	6.0	:0:		1 1		1 1		ŧ	i iP	l .
Lead		: :	1.0	:U	1.0	: U :	1.0	: U : :	,	1	: IF	1
:Magnesium:			37.0	:ប	}	1 1		1 11		1		ł
:Manganese:		: 1	2.0	¦U:		1 :		1 1			1 1P	i
Mercury		: :		1		1 1		1 11			: 1	1
(Nickel		: :	22.0	:U	 	1 1		1 11		1	F	\downarrow
Potassium		: :	722.0	101	}	1 1		1 1			i i P	}
(Selenium_		1 1	2.0	: U :	2.0	:B;	2.0	:0:			; ;F	1
Silver		; ;	2.0	:0:		1 1		1 11			i iP	;
Sodium			30.0	:U	}	1 1					HF	:
Thallium_		1 1	2. 0	:U:	2.0	101	2.0	1011			HF	1
Vanadium_		: :	4.0			1		1 1			1 1 F	
Zinc		: :	2.0	10	}	1 1		: 11			i iF	:
:Cyanide;				1 .		1 1						
, · — i		: :		1				1 1				

BLANKS

Lab Name: KEYSTONE LAB-HOUSTON

Contract: 68-D0-0147

Lab Code: KEYTX Case No.: 17744 SAS No.:

SDG No.: MCJE11

Preparation Blank Matrix (soil/water):

i ;	Initial Calib. Blank	; ; ;	Ca		ing Cal		.on		Frepa- ration			
Analyte :	(ug/L)	C;	1	C	2	С	3	C;;	Blank	C	; ;	М
Aluminum_		-¦				-,-,-		·		— ₁ –	! !- !	
Antimony_{		!		1 1		1 1		1 11		ļ	11	
Arsenic		1 1	2.0	:U:	2.0	:U:	-2.2	1B::		1	1 16	=
Barium		1 1		1 1		1 1		1 11		1	11	
:Beryllium:		1 1		1 1		1 1		1 : 1		;	1 1	
Cadmium				1 1		1 1		1 1 1		1	1 1	
(∩ lcium		1 1		1 1		1 ;		1 ::		1	11	
l comium_l		1 1		1 1		1 1	-	1 11		ł	1 1	
:Cobalt:		1 1		{ {		1 1		1 11		4	1 1	
:Copper;		1 1		1 1				1 11		1	11	
:Iron:		} }		1 1		1 1		1 11		:	1 1	
Lead		1 1	1.0	:U:	-1.5	(B)	-1.3	(B) (ŧ	1 18	F
Magnesium		1 1		} }		1 1		: ::		1	1-1	
(Manganese)		1 1		1 1		1 1		1 11		- 1	11	
Mercury:		1 1		1 1		1 1		1 11		:	11	
Nickel		1 1		1 1		1 1		1 11		;	!!	
:Potassium:		1 1		1 1		1 1		1 11		1	11	
Selenium_		1 1	2.0	:U:	2.8	1B1	2.0	1011		1	1 18	F
Silver		1 1		1 1		1 1		1 11		1	1 1	
Sodium		1 1		1 1		1 1		1 11		1	1-1	
!Thallium_!		1 1	2.0	: U :	2.0	¦U:	2.0	1011		1	1 1 F	F
{Vanadium_{		: :		1 1		1 1		1 11		;	11	
Zinc		1 1		; ;		1 1		; ; ;		1	11	
Cyanide		1 1		1 1		1 1		1 11		1	1 1	
1		1 1		1 1				1 1		- 1	11	

3 BLANKS

Lab Name: KEYSTONE LAB-HOUSTON

Contract: 68-00-0147

Lab Code: KEYTX

Case No.: 17744 SAS No.:

SDG No.: MCJE11

Preparation Blank Matrix (soil/water):

	Initial		_					11	_		
ţ	Calib.	ł	Cc		uing Cal		ion	1 1	Prepa-		11 1
1	Blank	- !			ank (ug/		_	1 1	ration		11 1
Analyte :	(ug/L)	C!	1	С	2	C	3	Cii	Blank	С	M
Aluminum_:		· ,		-, -,	······································	-,-,-		; ; 			
Antimony_!		1 1		1 1		1 1		1 11			
Arsenic		! !	2.0	1111	2.0	101	2.0	1011			ije i
Barium :		1 1				!!!		1 1 1		-	
Beryllium:		ii		ii		ìi		1 11			
Cadmium!								1 11			ii i
\cium_				1 1		i i		1 11		•	
comium_!		1 1		1 1		1 1		1 11			
Cobalt		1 1		1 1		1 1		1 11		;	11 1
Copper:		; ;		1 1		1 1		1 11		ł	11 1
Iron!		1 1		1 1		1 1		1 11		:	11 1
Lead:		1 1	1.0	101	-1.1	(B)		1 1:		1	F
Magnesium:		1 1		1 1		; ;		1 11		1	11 1
Manganese:		1 1		1 1		1 1		1 11			11 1
Mercury:		1 1		1 1		1 1		1 11			
Nickel		1 1		1 1		1 1		1 11			1 1
Potassium		1 1		1 1		1 1		1 11			11 1
Selenium_;		1 1	2.0	: U :	2.0	: U :	2.0	1011			HF H
Silver		1 1						1 11			
Sodium!		i i		1		1 1					
Thallium_:		i i	2.0	; U ;	2.0	iu:	2.0	1011			HF !
Vanadium_				1 1		; ;		1 11			1 1
Zinc		i i		íi		; ;		i ii			
Cyanide		ii		ii		i i		1 11			

3 BLANKS

Lab Name: KEYSTONE LAB-HOUSTON

Contract: 68-D0-0147

Lab Code: KEYTX

Case No.: 17744

SAS No.:

SDG No.: MCJE11

Preparation Blank Matrix (soil/water):

! ! ! !	Initial Calib. Blank	;	Con		ing Cal ink (ug/			 	Prepa-		1 1	
TAnalyte	(ug/L)	C	1	C	2	C	3	Cit	¦ Blank ¦	С	11	M
Aluminum_				-,-		-,-,-		-,-;	!			
Antimony_		1 1	!	1 6		1 1		1 1	}	- 1	11	
Arsenic		1 1	;	1		1 1		1 1	!	ł	::	
Barium		: :	:	- }		1 1		1 ;	!	1	11	
Beryllium		1 1	:	1		1 1		1 1	;	1	1 1	
Cadmium		1 1	:	ŧ		1 1		1 1	1	- 1	::	
ir leium;		; ;	;	}		; ;		1 1	;	;	<u> </u>	
.comium_		1 1	:	ł		1 1		1 1	¦	1	11	
Cobalt		1 1	1	ł				1 1	<u> </u>	+	::	
Copper		1 1	1	. 1		1 1		1 1	;	1	; ;	
Iron		1 1	:	ł		1 1		1 1	<u> </u>	1	: :	
Lead		1 1	}	1		} {		1 1	!	1	1 1	
Magnesium		; ;	i	- 1		1 1		1 1	[:	1 1	
Manganese		1 1	:	1		: :		1 1) ;	1	: :	
Mercury		1 1	;	- 1		{ {		1 1	i 1	1	1 1	
(Nickel		1 1	;	1		1 1		1 1	}	1	11	
!Potassium!		1 1	:	į.		{ }		1 1	i	;	; ;	
Selenium_		1 1	1			1 1		; ;	1	{	11	
Silver		1 1	1	1		1 1		1 1	1	+	1 1	
{Sodium		((i	1		1 1		1 1	{	- 1	11	
Thallium_		1 1	2.0 9	u:	2.0	:U:	2.0	101	t t	1	HIF	=
Vanadium_		1 1	;	1		1 1		1 1	!	1	1 1	
Zinc		1 1	1	1		1 1		1 1	¦	1	: :	
Cyanide		: :		: :		1 1		1 1	•	}	11	
, · —		1 1	!	:		: :		1 1	i	1	11	

3 BLANKS

Lab Name: KEYSTONE LAB-HOUSTON

Contract: 68-D0-0147

Lab Code: KEYTX

FYTY Cas

Case No.: 17744

SAS No.:

SDG No.: MCJE11

Preparation Blank Matrix (soil/water):

i	Initial Calib.	;	Co		nuing Cal		ion	11	Prepa-			i !
	Blank		4		lank_(ug/		_	- 1		_	; ;	<u> </u>
:Analyte	(u g/L)	Ci	1	С	2	C	3	CII	Blank	C	i M	i
]	-		-		-,-,-	· · · · · · · · · · · · · · · · · · ·	' '			ii	i
Antimony_		! !		1 1		1 1		1 11		•	() ! !	!
Arsenic		; ;				1 1		1 11		!!!	! ! ! !	1
Barium		, ,		; ;				, ;;		,	1 1	į
Beryllium	•	: :		!!				1 11		!!!	! ! ! !	!
Cadmium		: i		i i				1 11		! !	!!	•
I lcium		; ;									1	!
. comium_		1		1 1				1 11		! !	!!	
Cobalt		ii		ii		i		1 11				:
Copper				1 1				1 11				ì
!Iron		1 1		1 1		1 1		1 11				i
Lead				1 1		1 1		1 11			1	;
Magnesium		; ;		; ;		1 1				1	1	1
:Manganese :				1 1		1 1		1 11		1 1		1
Mercury		1 1		1 1		1 1		1 11		1 1	1	1
!Nickel		1 1		: :		1 1		1 11		1 1	1	$_{1}$
(Potassium)		1 :		1 1		: :		1 11		1 1	1	:
:Selenium_:		1 1		1 1		1 1		1 ::		1 1	1	1
Silver		1 1		1 1		1 1		: ::		1 1	1	1
Sodium				1 1				1 11		; ;	!	!
Thallium_		1 1	2.0	101	2.0	: U :	2.0	1011		1 1	ŀF	1
Vanadium_	1	1 1	•	1 1		1 1		1 11		: :	ł	١ .
:Zinc:	,	1 1		1 1		; ;		1 11		1 1	1	ļ
Cyanide	}	1 1		1 1		1 1		1 ; ;		; ;	1	1
1		1_1		1_1_		_ _ _		1_11		;	l	ţ

BLANKS

Lab Name: KEYSTONE LAB-HOUSTON

Contract: 68-D0-0147

Lab Code: KEYTX

Case No.: 17744

SAS No.:

SDG No.: MCJE11

Freparation Blank Matrix (soil/water):

 	Initial Calib. Blank	:		В	nuing Cali lank (ug/l	_)			1	Prepa- ration	-	1	
Analyte	(ug/L)	C:	1	С	2	С		3	C 1	Blank	С	: !	; M ;
Aluminum_		`i-`:-		1-1		- ;	1		·,-;		_;	- ;	;—
Antimony_{		; ;		1 1		;	Į.		; ;	}	1	;	;
Arsenic		1 1		1		1	1		1 ;	i	}	1	ŀ
Barium(1 1		1		ł	}		1 1		1	i	ł
Beryllium:		1 1		1 1		1	1		1 1	•	1	i	1
Cadmium!		1 1		1 :		1	1		1 1	•	1	-	;
r lcium		1 1		1 1		1	1		1 1	ļ	1	ł	
comium_:		1 :		1 1		1	:		1 1	1	1	1	1
Cobalt:		1 1		1 1		}	:		1 1	ļ	}	1	;
Copper!		! ;		1 :		1	:		1 1		- 1	1	ŀ
Iron		1 1		1 1		1	:		1 1	}	:	ŧ	ŀ
Lead		1 1		1 1		1	1 -		1 1	1	ł	1	
Magnesium:		1 1		1 1		ł	!		1 ;	! !	}	ŧ	!
Manganese i		1 1		1 1		1	1		1 1	<u> </u>	ŀ	1	ļ
1ercury		1		1 1		1	1		1 1	¦	1	ł	ļ
Nickel!		1 1		1 1		;	ł		1 1	i	1	t	
Potassiumi		1 1		1 1		1	1		1 1	!	ł	ł	
Selenium_!		1 1		1 1		1	ţ		1 1	ł	+	1	
Silver		1 1		1 1		1	l		1 1	1	ł	į	
Sodium!		1 1		: :		ŀ	ŀ		1 1	1	1	ł	
Thallium_!		1 1	2.0	: U:	2.0	١U	1	2.0			ł		ŀF
Vanadium_!		! !		1 1		ŧ	1		1 1	1	;	1	
Zincl		1 :		1 1		1	:		1 1	ł	ł	ł	
Cyanide!		1 1		1 1		ŀ	:		1 1	ŀ	1	ŀ	l
		1_1_		1_1		_	!		1_1	!	¦ _	_ 1	}

ICP INTERFERENCE CHECK SAMPLE

Lab Name: KEYSTONE LAB-HOUSTON

Contract: 68-D0-0147

Lab Code: KEYTX Case No.: 17744 SAS No.: SDG No.: MCJE11

ICP ID Number: TJA61

ICS Source: EPALV90

Concentration Units: ug/L

; ;	; 	True	l Init	ial Found		¦ ¦ F	inal Found	
: :	Sol.	Sol.	! Sol.	Sol.		: Sol.	Sol.	
Analyte	Α	AB	Α	AB	%R	l A	AB	%R
Aluminum_	540055	536472	4907031	498407.6	92.9	492685	489829.91	91.3
Antimony_		:	141	7.01		: 29:	-14.81	
Arsenic		¦	: :	1		!	{	
Barium		502	121	453.81	90.4	: 12:	439.1;	87.5
Beryllium		480	01	449.41	93.6	1 01	432.61	90.1
Cadmium		907	2:	867.8;	95.7	: -2:	857.1	94.5
Calcium	494040	1512228	490112:	497994.1	97.2	1 4889991	485989.61	94.9
Chromium_;	21	1 529	191	482.01	91.1	: 17:	468.51	88.6
:Cobalt		477	11:	431.7	90.5	12:	419.8	88.0
r per!		543	-21;	516.71	95.1	-21:	502.01	92.4
l on	206236	199845	: 181855:	185392.41	92.8	1796051	179494.01	89 .8
Lead		;	; ;	}		: :	!	
Magnesium	531358	1527530	501252:	510837.41	96.8	: 508379:	506125.01	95.9
:Manganese :			-30:	446.21	90.0	185-	433.41	87.4
!Mercury!		1	1	ł		: :	1	
Nickel		940	181	833.2	88.6	: 2:	792.01	84.3
:Potassium :		1	-12421	-1241.7		-675	-1082.7	
:Selenium_;		•	1	ì		<u> </u>	;	
Silver		960	: -38:	869.1	90.5	: -38:	863.7:	90.0
Sodium		!	16361	1694.6		1687:	1684.4	
Thallium_		ł	1	1		1 1	¦	
:Vanadium_;		509	35:	476.8	93.7	: 38:	468.4;	92.0
Zinc	216	1208	2121	1146.4	94.9	: 216:	1135.3;	94.0
t	l	ł	! ;			tt	1	

SPIKE SAMPLE RECOVERY

EFA SAMPLE NO.

Lab Name: KEYSTONE LAB-HOUSTON Contract: 68-D0-0147 :__

Lab Code: KEYTX Case No.: 17744 SAS No.: SDG No.: MCJE11

Level (low/med): LOW

Matrix: SOIL

% Solids for Sample: 76.0

Concentration Units (ug/L or mg/kg dry weight): MG/KG

	1		;		;		1	ł	t
	{	Control	!	;	¦		i	}	-
	1	Limit	Spiked Sample 💛	Sample :	: Spike :		1	-	1
_	Analyte :	%R	: Result (SSR) C:	Result (SR) C	Added (SA)	%R	Q	lM.	1
_	1		1		·	·	.	.	ì
	[Aluminum_]		1	1 1	1		ļ	:NR	1
	!Antimony_	75-125	121.7868;	7.8947:0:	131.58	92.6	1	ł F'	Ĭ.
	Arsenic	75-125	16.8684;	6.6579(10.538	97.0	1 '	(F	i
	Barium	75-125	; 531.6974; ;	52. 70261	526.32	91.0	ł	iP	1
	Beryllium	75-125	13.0105;	0.5105(B)	13.16	95.0	}	IP	ŀ
_	Cadmium	75-125	13.0158;	0.7895(U)	13.16	98.9	ţ	l F'	1
	Calcium	1	; ;	; ;	;		1	INR	;
	¦r∵∽omium_;	75-125	: 63.6000; ;	10.6316 (52.63	100.6	ł	(P	1
_	ال عد ، ا	75-125	128.4421;	6.3658 B	131.58	92.8	ł	۱P	1
	{Copper	75-125	1 73.52631	9.96841	65.791	96.6	1	¦F'	1
	{Iron		1 : 1				1	INR	1
	Lead		: 239. 4737; ;	181.5789	5.26	1100.7	1	ŀF	1
_	Magnesium		1 : 1	· ! - !	!		1	INR	1
	(Manganese)	75-125	(429.7684)	317.6579	131.58	85.2	1	\F	[
	Mercury	75-125	(0.6579)	0.1316(U)	0.66	99.7	1	ICV	į
-	Nickel	75-125	129.07111	7.3526(B)	131.58	92.5	ł	(P	ł
\	(Potassium)	}	1 :	1 1	:		!	!NR	ŀ
	:Selenium_	75-125	: 2.6 5 79;	0.631618	2.63	77.0	į	ŀF	1
	Silver	75-125	10.2974;	0.5 2 63 (U)	13.16	78.2	ł	(P	ļ
	Sodium		1	1	;		;	INR	-
	:Thallium_	75-125	12.2105;	0.5263:U:	13.16	92.8	ł	۱F	1
	Vanadium_		140.65001	19.58421		-		(P	-
	{Zinc	75-125	: 289. 7684: :	168.5632:	131.58	92.1	1	iP	•
	Cyanide	175-125	6.3737:	0.6579:0:	6.58	96.9	ŀ	TAS	
	i		ll _	·	l		. 1 _	!	1

	Comments:
-	

migiste kon:

Metal Pb IDI I right 17744 SDGWQE 11

U= < IDL Graphite Furnace Spike Recovery Evaluation Form

					<u>,</u>				•
	Sample ID	Instr. Levei Resuit	PDS Recove	ry	Diluted Result	Diluted es. Recovery	MSA Result (if needed)	Final Result Reported M9/K G	- ()
see w	MUTEI	301. Chi	53(1	<u>(,)</u>	5.7x 50	90 hi'CV		113.45	,230-
اسمر	. (2	154	62		12.4×10	84 -	>7.9×20	62.71	9510
	13	113.	7(24.8 x 10	14	5.0 x 20	33,3	72.
	14	198.2	70		8,7×20	79	5.7×40	105.51	145.
	15	870	_		18.7×100	74	7.3 x20	349.	186
بعقوردايد الا	الم	亭	hı`		83. X 100	125 (61)		4810V	4,20
72-3000°	(7	107.	50		8.6×10	84	3.4×20	35.71	30 -
;	18	90.5	84		6.9810	89		18.2 0	32,
	TED	92.6	171		7.3×10	113		19.2 /	34,-
	185	104,1 (hi)	_	9.1XIU			110.70	(90%
	19	70.3	94		·			16.90	24.0
	೩೮	So 2 (hi	192 (A	11)	8,2X100	106		253.0	413.
	21	hi V	l bi		6.7x200	102		358.V	360 -
	22	87.4	101		8,3×10	116 (no-		22.26	66-0
	23	105.4	100		7.8×10	113		20.24	40.
	26	60.6	187					17.845	64.0
i									
:	MCZELLY				5.8x50	115		113	
:	MCTELL OL				52,5x200	88		481 c	· •
	L		<u> </u>			·			•
1			<u> </u>						
			<u> </u>						_
			<u> </u>				·		ı
l		ļ	<u> </u>						
į			 						ı
			<u> </u>						

11 10L = 25. ug) 0

Metal AS IDI 2 ugle -U= < IDL

64

17744 SDGMUZ 11

Graphite Furnace Spike Recovery Evaluation Form

Sample ID	Instr. Levei Result	PDS Recovery	Diluted Result	Diluted es Recovery	MSA Result (if needed) : 119/1	Final Result Reported M9/K0	۱۷
MUEI	18.0	96.				7.0 ~	3
. (2	15.3	96	<u> </u>			601 V	B
13	23.6	94				7.8	13
14	19.1	81_	₽		8.3.	3.8	13
15	hi	hi	18.6×50	16-	31/x50	372	36
طا	52.1	150			45.5.13 (9)	62.40	7
17	23.6	72			16.1	3.9 ~	13
18	253	93			· · · · · · · · · · · · · · · · · · ·	6.7	13
TRD	26.0	78			27.8	7.3 ~	3
185	64,1					97 %	
19	22.4	104				5,4 4	B
20	29.1	8.5				9.0	
21	199,0	M	23.2x5	126	24.9 x5	33.3 4	
22	38.8	100.		·		10.40	
23	21.5	110.		· .		5,6	B
26	13,4	99 80	15.4	129		34	B
ļ							
j						<u>.</u>	
	<u> </u>						•
<u></u>							,
	<u> </u>						
ļ							,
ļ							
							•
	<u> </u>						

(A)GINA

Metal _ IDL _ U= < IDL

JKIUIRA (Eed)

17744 SDGMUZII

Graphite Furnace Spike Recovery Evaluation Form

	Sample ID	Instr. Level Result	PDS Recovery	Diluted Result	Diluted PO Recovery	MSA Result (if needed)	Final Result Reported M9/K 9	
	MUTEI	3.8	105	·			1.57	3
•	12	6.3	57			1.7 (2U)	U	
	3	2.9	78		,		0.960	B
	14	4.C	75			15 (2W)	u	
06	15	5.1	0	.5.4x5	78-8	1.55x5 (24x5	Sell	
	طا	ND	89				U	
	17_	2.9	(1)/				0.71 4	13
	18	2.7	84				0.631	\mathcal{B}
	- IED	NO	99				U	
	185	10.1					74 %	
	19	2.5	86				0.60 -	
	20	3.1	(62)				0.96	β
_	21	MD	81					
15	22	2.7	54	•			0.59	ß
	23	NO -	86	2.8	0 ~		0.82	•
	~~	2.2	142	213	95		0.02	
								•
								•
					· · · · · · · · · · · · · · · · · · ·			•
								•
								•
								•
								•
								•
								•

Metal II

17744 SDGMUZII

-U= < IDL

Graphite Furnace Spike Recovery Evaluation Form

	Instr. Level	PDS	Diluted	Diluted PB	MSA Result	Final Result
Sample ID	Result	Recovery	Result	Recovery	(if needed)	Reported
MUTEI	NP	105				U
. 12.	NO	104				
3	ND	103				
14	ND	99				
15	NO	106			<u> </u>	
ط	NP	104			· ···	
17	NO	104				
18	NO	105				
TRD	NO	103				
185	46.4					93 %
19	NO	100				U
20	ND	98				
21	NO	102				
22	NO	104		·		
23	ND	109	<u> </u>			
26	NO	1109	<u> </u>			V
}						·
			! 			
<u> </u>				<u> </u>		
			<u></u>			
			- <u></u>			
			i			

STANDARD ADDITION RESULTS

b Name: KEYSTONE LAB-HOUSTON

Contract: 68-D0-0147

Lab Code: KEYTX

Case No.: 17744 SAS No.:

SDG No.: MCJE11

Concentration Units: ug/L

I EPA	1 1 1	· · · · · · · · · · · · · · · · · · ·	1	 	1 1	1 1
: Sample	(Anio ADD)	1 ADD	: 2 ADD :	COA E	: Final :	1 1
No.	: ABS	CON ABS	CON ABS	CON ABS	Conc. r	: Q :
!	_	 	<u> </u>	·	! i	_!{
MCJE14	(AS (0.043)	5.0010.077	: 10.00:0.095:	15.0010.123		
MCJE14	(AS 10.043)	5.0010.072	1 10.0010.100	15.00:0.123	: 8.3:0.9986	. 🗸
MCJE15	AS 0.080	10.0010.105	: 20.00:0.135			_
MCJE16	1AS10.0481	10.0010.072	1 20.0010.100	30.0010.080		
(MCJE16	IAS10.0491	10.0010.076	1 20.0010.0991	30.0010.076	: 57.1:0 . 6567	7 14 [
MCJE17	1AS10.0401	10.0010.067	: 20.00:0.094	80.00(0.116	। 16.1:0.9988	3 1 4
MCJE18D	TAS10.0601	15.00:0.095	; 30.00(0.118)	45.00:0.160	: 27.8:0.9943	3 + 4
(MCJE18D	1AS (0.055)			· · =		
MCJE21	AS 0.053	10.0010.082	1 20.0010.105	30.0010.120		
MCJE21	(AS(0.055)	10.0010.075	1 20.0010.098:	30.0010.120	: 24.9:0.9996	5 I 🗸 🗀
MCJE12	19B10.0221	5.0010.036	1 10.0010.049	15.0010.064		ı
MCJE13	FB 0.015	5.00:0.032	1 10.0010.046	15.0010.062	1 5.010.9994	4 : A
IMCJE14	PB 0.016	5.00:0.028			1 5.710.9983	3
P 7E15	(PB(0.020)	5.0010.036	1 10.0010.050	15.00:0.063	1 7.310.9989	9: #
h JE17	PB 0.012	5.0010.027	10.0010.043	15.0010.058		
MCJE12	SE:0.003	5.00(0.019	10.0010.025	15.0010.041	1.710.9864	1 1 + 1/
MCJE12	SE 0.005	5.0010.007	10.0010.028	15.0010.035	; 9 .9 .10.9541	L¦+;
MCJE14	SE(0.005)	5.00(0.016	1 10.0010.029	15.0010.044	1.5/0.9976	51/1
MCJE14	(SE(0.012)	5.0010.024	1 10.0010.0421	15.0010.055	: হ=৪:0.9971	
MCJE15	4SE10.0041	5.00(0.015	10.0010.030	15.00(0.040	1.510.9978	2
1	+ + +	1	1	!	}	1 1
ŧ	1 (1	!	1	1 1
;	1 1	!	1	!	1	1 1
1	1 1	! !	}	;	1	1 1
ļ	1 1	} }	1 :	 	i	
1	1 1		1	l l	!	1 1
1	1 1	 	1	;	1	1 1
1	; ;	1 1	1		!	
:	1 1	1 1	1		!	1 1
ŀ	1 1	!	1	l I	1	+ +
1	1 1	!	1	1	1	1 1
1	1 1	1	1	1	;	1 1
1	1 :	1	1	;	1	+ +
ł	_ i	l	ll	!	11	1_1

FORM VIII - IN

3/90

DUPLICATES

EFA SAMPLE NO.

Lab Name: KEYSTONE LAB-HOUSTON Contract: 68-D0-0147 :

Lab Code: KEYTX Case No.: 17744 SAS No.:

SDG No.: MCJE11

Matrix (soil/water): SOIL

Level (low/med): LOW

% Solids for Sample: 76.0

% Solids for Duplicate: 73.4

Concentration Units (ug/L or mg/kg dry weight): MG/KG

		11			11		11	1 1
	Control	11			1 1		11	i i
Analyte	Limit	11	Sample (S) C::	Duplicate (D)	CH	RPD		! M !
Aluminum_		.i i. 	3397.4634: ::	3491.3000	_	2.7		- F
Antimony_			7.8947(0)	7,8947	1011	_ • '	11	iP i
Arsenic_;			6.6579; ;;	7.3081	1011	9.3	;;	iF i
Barium		11	52.7026; ;;	51.8816	1B::	1.6	11	iP i
Beryllium			0.5105(8)	0.5763	1811	12.1	1 1	IP I
Cadmium			0.7895:011		1011			IF I
Calcium			2108.6553; ;;	2130.3291	1	1.0		i P
Chromium_			10.6316; ;;	10.9921	1 11	3.3		1F 1
Cobalt		11	6.3658(8)(6.2395	1B11	2.0	1 1	iP i
i per		1-1	9.9684; ;;	10.2184	1 11	2.5	11	1F 1
- un	}	1 1	10750.5322! !!	10928.9844	1 11	1.6	{ }	(P)
Lead	}	11	181.5789: ::	192.1053	1 11	5.6	11	iF i
:Magnesium:	}	11	936.6500(B)(971.0816	(B(:	3.6	1 1	(F) (
Manganese	1	11	317.6579: ::	310.3868	1 11	2.3	1 1	IP :
Mercury		11	0.1316(U)(0.1316	1011		: :	(CV)
Nickel	i 1	1.1	7.35 2 6(B):	6.1237	1B11	18.2	: ;	F
!Potassium:		1 1	397.3369(B)(384.2658	{B:;	3.3	1 1	IP I
Selenium_:		11	0.6316¦B¦¦	0.5263	1011	200.0	; ;	¦F ¦
" Silver	,	; ;	0.5263;U ;	0.5263	U		; ;	F 1
Sodium		1 1	43.5237(B);	49.1895	(B);	12.2	1 1	IF I
Thallium_		11	0.5 26 3 U	0.5263	:U::		1 1	if i
Vanadium_			19.5842	19.7158	1 11	0.7		IP I
{Zimc		1 1	168.5632; ;;	·	1 11	0.3	11	HF 1
Cyanide	1	11	0.6579 U	0.6579				IASI
\\	<u> </u>	Н,			_1_11,		_1	11

KEYSTONE D.C.# 17744-3- *人*ろ

HARLING .

ंधिs. EPA - CLP

ICP SERIAL DILUTIONS

Lab Name: KEYSTONE LAB-HOUSTON Contract: 68-D0-0147 |

Lab Code: KEYTX Case No.: 17744 SAS No.:

SDG No.: MCJE11

Matrix (soil/water): SOIL

Level (low/med): LOW

Concentration Units: ug/L

1	11		11	Serial	11	%	11	;	1
1	11	Initial Sampl	le	Dilution	1 (1	Differ-	11	;	ţ
:Analyte	11	Result (I)	CII	Result (S)	Cii	ence	116	M: Ç	;
!	11				!!.		11_	_	. 1
Aluminum_	11	12910.36	1 11	12943.00	1 11	0.3	11	1P	1
Antimony_		30.00	:0::	150.00	1011		11	₹₽	1
Arsenic	11		1 11		1 11		11	INR	: 1
Barium	1.1	200.27	1 11	200.55	1B11	0.1	1.1	₽₽	1
Beryllium	11	1.94	(B):	5.00	1011	100.0	1 1	1F	15/2
Cadmium	1.1	3.00	;U;;	15.00	1011		: :	¦ P	ļ
Calcium	1.1	8012.89	1 11	8317.10	(B)	3.8	1 1	۱P	i
Chromium_	14	40.40	1 11	39.20	(B) (3.0	11	łŀ	1
:Cobalt	11	24.19	B	20.55	(B) (15.0	1 1	₹F′	1#
(Copper	11	37 .88	1 11	35.50	1B 1	6.3	1 1	۱P	1
:Iron	11	40852.02	1 11	41144.55	1 11	0.7	1.1	i P	ļ.
!Lead	11		1 11		1 11		1 1	INR	: 1
:Magnesium	11	3559.27	1B11	3600.75	(B) (1.2	1 1	۱P	1
Manganese		1207.10	+ ++	1222.75	1 11	1.3	11	¦ F'	1
Mercury			1 11		1 11		11	INF	:1
Nickel	11	27.94	;B;;	110.00	::::::	100.0	; ;	(P	1
Potassium	11	1509.88	(B);	3610.00	:::	100.0	11	¦F'	1
Selenium_	11		+ ++				::	INR	: }
tSilver	11	2.00	1411	10.00	lu i i		1-1	ť F	ŧ
Sodium	11	165.39	(B) (240.90	(B):	45.7	1 1	1P	12
Thallium_	1 1		1 11		1 11			INF	: i
:Vanadium_		74.42	1 11	76.45	:B::	2.7	1 1	;P	į.
Zinc	11	640.54	1 11	662.70	1 11	3.5	1 1	; F	ļ
!	11		1_11		_1 11		1 1	1	ļ

 $\frac{4}{5}$ $\left(\frac{S-I}{5}\right)$ 210L, no impact

FURNACE-AA L_NCH SHEET

Page or	
---------	--

KEYSTONE LAB-HOUSTON

D.C. #	D.C. #	-08
--------	--------	-----

INSTRUMENT ___ ANALYST _

CRDL IDL

Note: Use proper units and flags for final concentration

			INI	TIAL D	ATA		DILUT	ON DA	TA	MSA	DATA		ANALYT	E CONC
CUP NO	SAMPLE OR STD ID	CLIENT ID NO.	AVG CONC	RPD	ANAL SPIKE REC %	DIL FACT	AVG CONC	RPD .	ANAL SPIKE REC %	DIL FACT	CALC CONC INTCP	DIG FACT	UG/L	MG/KG
27		R	11.1	11.44	8606									(
28		MISERO	7./	<u> </u>										8.6
29		A	9.3	3.01	42%		 							_
30		MESE 21	0.9											d.4
21.		A	8-4	9.62	8/%		<u> </u> 				`			_
32		Mc 5E22	2.7	}		<u> </u>	ab 1	nest	alas	2.7:	shouldl	(22		0.9.
33		A	7.6	16.71	540/0	l .								
34		HLSE 23	1.9			<u> </u>							_	0.4
75		A	8.4	14.76	86%	<u> </u>								
36	0	cer	47.8	4.28									47.8	96%
77	00	ces	0.6										2	
38	3	ME51576	4.7			IX	28							0.6
39	20	A	14.2	40.8	<u> </u>				25%					

Furnace-AA Bench Sheet (8/88)

```
Se-S As-S
SN= 000031
                         14 A
           008.7
Conc
                  HIGH
       1
Mean
           008.7
                  HIGH
P/H
           0.047
                  0.254
Conc
       2
           007.6
                  HIGH
                        810%
Чean
           008.1
                  HIGH
 /H
           0.054
                  0.237
          Se-S As-S
Mean
           008.1
                  HIGH
SD
           000.8
RSD
           09.62
          Se-S As-S
SN= 000032
                          15 MCSEAR
Conc
       1
           001.0
                  040.2
Mean
           001.0
                  040.2
P/H
           0.006
                  0.133
Conc
       2
          003.5
                  037.5
Mean
           002.2
                  038.8
                         0.1W
P/H
          0.005
                  0.133
          5<del>6-5</del>-83-5
           002.2 038.8
Mean
SD
          <del>001.8</del>
                  001.9
RSD
           80.00
                  04.92
         Se-S As-S
SN = 000033
                  060.4 15 A
Conc
          006.7
Mean
          006.7
                  060.4
P/H
          0.052
                  0.189
Conc
       2
          008.5
                  057.5
Mean
          007.6
                  058.9
                          59% 100%
P/H
          0.052
                  0.198
         Se-S As-S
∝ean
          007.6
                  058.9
SD
          001.3
                  002.1
RSD
          16.71
                  03.48
         Se-S As-S
SN= 000034
                          16 MC5E23
Conc
       1
          002.4
                  021.1
Mean
          002.4
                  021.1
P/H
          0.005
                  0.075
Conc
          001.5
                  021.9
Mean
          001.9
                  021.5
                                  4.3
P/H
          0.003
                  0.088
                         0.4
         Se-S As-S
Kean
          001.9
                  021.5
SD
          000.6
                  000.6
RSD
          33.68
                  02.60
         Se-S As-S
SN = 000035
Conc
                  046.0
      1
          009.5
Mean
                  046.0
          009.5
P/H
                         86% /100/
          0.059
                  0.186
Conc
      2
          007.7
                  040.8
Mean
                  043.4
          008.6
P/H
          0.038
                  0.168
         Se-S As-S
''`an
          008.6
                  043.4
          001.3
                  003.7
RSD
          14.76
                  08.45
```

强快进步

1120

```
Bury
                                      Pb. P.T. SGO
             14:15
     -1.6
                                            H92-01.302
     -1.5AVCES 1.0 U
61
                                              2/26/92
    -11.85CV
      9.6
9.1AV OIL (0X)
                       1103
                              m CJE 18(splc)
     8.21CV
                                     MC75 20
      8.2AV (3 (100x)
                     (8.2)(100)(2) = 164mg/kg
63
     29.2
     29.5
                    105.53
                                     mcJe 30A
     29.3AV +20
64
     0.60CV
                                             MCJEZI
      6.8
6.7AV 614(200x) (6.7)(200)(2) = 268mg)kg
65
     2.77CV
     27.3
                                            m cJE21A
     26.8
                        101.53
     27.0AV +20
66
     1.48CV
                         (8.3)(10) = 16.6mg/kg
     (3.3AV 015 (10x)
67
     4.34CV
                             NU MSA MCJE 22 A
penformid MCJE 22 A
     31.5AV +20
     0.44CV
                        (7.8)(0)(a) = 15.6 mg/kg
      7.8AV 016(10x)
69
                       113.5
     29.8
                                         MCJZ 23A
     30.5AV + 20
70
     3.58CV
     52.3
                       51.1/50.0 = 102.23
     51.1AV CCV 9
71
     3.33CV
                         1000
     -1.3AVCE
72
    -0.83CV
                                            MCJE 11
      5.6
                        (5.8)(so)(2) = 58 mg/kg
      5.8AV 002 (50x)
73
     4.19CV
                                           MCJE 11A
     28.8
                        115 3
     28.8
     28.8AV +20
74
                                             mcje 16
     0.10CV
                       (525)(200)(2) = 2100mg/kg
     52.5AV@7(Z00X)
75
```

71.9 ORIGINAL MCJE 16A. 68.1 87·5mg 70.0AV +20 76 2/26/92 3.83CV 13:35 49.8 49.7 49.7 AV COUP 49.7 SO.0=95.43 T: N 77 0.10CV 15:40 -1.4-0.9 -1. IAVCEB L'OU 78 -25.50CV 20 X corr= 0.999 003(2K) 0.022+0 MCJE12 79 Slope = 0.00278 0.036+5 MUEIZ 80 1020=0.0219 81 0.849+10 MCJE 12 0.064 HSmcJE12 82 004(2x) 20 X 0.015to mcJe13 83 Corr = 0.999 0.03215 MCJE 13 0.04640 MCJE 13 84 Slope = 0. 0031 85 1294=0.01S5 0.062H5mcJe 3 36 = (5)(0(2) = 2.0mg/kg 0.016+0 mcJE14 87 COT (20.998 0.028+5mcJE14 88 510pe =0.00272 0.044 HOM CJE 14 Inter = 0.0156/40) 89 0.056+15 mcJe 14 90 =(5.73/Ca)=_2-25mg/hg 006(2x) 200 X Corr=0.998 0.020+0 MCJE 15 91 Slope=0.00286 92 0.036+5 mcJE 15 0.050×10 NICJE IS 0.063+15 MCJE IS 93 1nter= 0.0200 94 x1 = (7.27)((E))2) = 2.90me/kg 008(20)-201X corr= 0.999 0.012+0 MCJE 17 95 Slope= 0.00308 0.027 F5 MCJE 17 96 1n Per = 0.0119 97 0.04310 mcJ & 17 0.05875 98 MCJEIT 50.8 CCV 10 50.8 SO.0 = 101.69 99 100

000169

				ORIGINA		
1		ழு இத்து முக்கு இத	Si del 1 de 1 de 1 de 1 de 1 de 1 de 1 de	an in Marie 65	:	
	PESGO Timangl	Hally Log Run For	(pb by turr	rale	17:35	PE
	2/26/92BLK8:00	CC19:15	33 +20 6	र् लाक्ष्म	اكنك	<u> </u>
		H92-01.30Z	34 olb 68	+20	17:30 CCB	
- A	<u></u>	7 002	35 tao	015(lox)		
	100.0 ^{8;20}	+20	35 +20 12:10 36 CU 12:10	120		
-	TCU(2x) 3	003	31 CCB 19	016 (10Y)		
-	ICB8:25	+20	30 011 - 10	1.Fa.Q		
	CCV 8:30	004	39 tao 11	1 /3//11		-
	CC8835		40 002 (SOX)			
	CRA 9		I	3 002(50x)		
JH-	PBS ,	+20	42_03(10x)	I I		
	PBBA ~ LCSSLXX)	1 000	43 +20 7	100/1200	\ <u>i</u>	
	LCSSA	10:35 +20	44 004(10x)	15,35		
	CC19:105	13 CCB 10:20	45 +20 7 46 005 (zox)	8-75:40		1 lutur
	CEB9:10	14 CCB	47 720131.05	(RON)	20X	factors
			41700 -	003(X)	200	for
	og visit og manski ski ski ski ski ski ski ski ski ski 	n_008	49 CCB 3:15	+10.	#	MSA
		18 +20	50 00b (100x)			analysis
	· - · · · ·	7 009	SI + ZO	004(ZX)	ZCX	
<u> </u>	•	1 '	52(007(100x)	+5		
	·	1	53 t20	+10		
	·		54_008(10X)	+15		
		13 011(Spk)	SS +20	005 (Zy) =	- 40x	
3	1 o 1 f	24 CCV 11:10	56 009(10x)	P5 /		/
-	· · · ·	25 000 11:15	57+20	+10	-	-
		26 012	58 OH(50x)	H15/20	VOIV	
		27 120	89 +20	1000 (1000)	20UX	
1-	$A = \{a_i, a_i, a_i, a_i, a_i, a_i, a_i, a_i, $	28 013	60 ECV 14:10	140 FS		1
	$\mathcal{F}_{\mathcal{F}}}}}}}}}}$	1 .	61 CB 14:15	Tu 2/24-		/
	<u> </u>	30 D/4	62 0 11 (15x)	100 / 10X	20x	
			013 (100x)	008(18)		70
		Υ	120 6. di	+10	- 0	270
M_{\perp}	•		का । विश्व व्यक्तिके प ्रि	1 てい・1	-	

URGIEFEPA - CLP

10

Instrument Detection Limits (Quarterly)

Lab Name: KEYSTONE LAB-HOUSTON

Contract: 68-D0-0147

Lab Code: KEYTX

Case No.: 17744

SAS No.:

SDG No.: MCJE11

ICP ID Number:

Date:

02/18/92

Flame AA ID Number:

Furnace AA ID Number: PE3030Z

					
	Wave- length	: Back-	: CRDL	IDL	; ; ; ;
Analyte	(UM)	ground	! (ug/L)	(ug/L)	! M!
		l	·		·
Aluminum_		i	1200	i	INE
Antimony_		i	160	}	INRI
Arsenic		:	110	¦	INRI
Barium		;	1200	ł	:NR I
Beryllium		ŀ	¦5	:	INR
Cadmium		!	: 5	1	INR
Calcium		:	15000	}	INR L
Chromium_!		:	110	i	INR
Cobalt		1	:50	1	INRI
Copper		!	:25	!	INRI
Iron		t	1100	;	INR
!Lead		t	13 -	!	INR
Magnesium		;	15000	ł	INE
Manganese		t 1	15	\ }	INE
Mercury		;	10.2	!	INRI
Nickel		;	40	!	INRI
Potassium		\	15000	as w	INR
Selenium_	196.00	BZ	¦5	المراجعة	1F
Silver		ł .	110	2397	:NR:
Sodium		!	15000	, ,	INR
Thallium_	276.80	BZ	10	2.0	IF I
:Vanadium_:			:50	!	INR
Zinc		ļ.	120	¦	INR!
1		ł	1	!	11

Comments:

10 Instrument Detection Limits (Quarterly)

Lab Name: KEYSTONE LAB-HOUSTON

Contract: 68-D0-0147

Lab Code: KEYTX

Case No.: 17744 SAS No.:

SDG No.: MCJE11

ICP ID Number: TJA61

Date: 02/10/92

Flame AA ID Number:

Furnace AA ID Number:

1					-
1	Wave-		1		
1	length	Back-	CRDL :	IDL	: :
Analyte	(nm)	ground	(ug/L)	(ug/L)	l M
11		·	!		: i
Aluminum_	308.20	ł	1200	14.0	iP i
Antimony_	206.30	;	160	30.0	ir i
Arsenic			110	}	NR
Barium	493.40	1	1200	1.0	iP :
:Beryllium:	313.00	1	(5	1.0	íP i
Cadmium			15	3.0	iP :
Calcium	317.80	;	:5000 :	7.0	} F
Chromium_	267.70	1	10	3.0	IP :
:Cobalt:			150	4.0	iF i
Copper			125	3.0	iP :
Iron	259.90	:	1100	6.0	1 P
Lead		-	(S -~	!	INR
Magnesium	279.00	! ≢	15000	37.0	i F'
Manganese	257.60	ŧ	115	2.0	iP :
Mercury			10.2	!	INR :
Nickel	231.60	ł .	140	22.0	iP :
(Potassium)	766.40	•	(5000	722.0	F :
Selenium_		-	15	1	INR
Silver			:10	2.0	
Sodium	588.90	ł	15000	30.0	iP i
Thallium_		-	110	-	: NR:
Vanadium_			150	4.0	if i
Zinc	213.80	ł	150	2.0	iP
11		1	{	<u> </u>	ا ا

Comments:		

10
Instrument Detection Limits (Quarterly)

Lab Name: KEYSTONE LAB-HOUSTON Contract: 68-D0-0147

Lab Code: KEYTX Case No.: 17744 SAS No.: SDG No.: MCJE11

ICP ID Number: Date: 02/14/92

Flame AA ID Number:

Furnace AA ID Number: PE560

: 	•	 Back- ground 		IDL (ug/L)	! ! ! M
Aluminum_		:	1200		NR
Antimony_{		¦	160 1		INR
Arsenic!		l	110 1		INR
Barium:		:	1200 1		INR
Beryllium:		1	15		INR
Cadmium;		ŀ	15 ;		INR
Calcium:		i	15000 1		INR
Chromium_¦		:	110		INR
Cobalt:		:	150		INR
Copper:		}	125 ;		NR
Iron		i	1100		INR
Lead:	283.30	BD	131	1.0	ŀF
Magnesium:		1	(5000 l		INR
Manganese:			115		INR
Mercury:			10.2		INR
Nickel¦		<u> </u>	140 1		INR
Potassium:		;	15000		INR
Selenium_		!	15		INR
Silver		=	110		INR
Sodium}		<u>.</u>	15000 1		INR
Thallium_;		i	110		INR
Vanadium_:		i	150		INR
Zinc:		i	120 1		INR

Commen	ts:						
		 			 	 	

10 Instrument Detection Limits (Quarterly)

Lab Name: KEYSTONE LAB-HOUSTON

Contract: 68-B0-0147

Lab Code: KEYTX Case No.: 17744 SAS No.:

SDG No.: MCJE11

ICP ID Number:

Date: 02/05/92

Flame AA ID Number: MAS50A

Furnace AA ID Number:

: : : : : : : : : : : : : : : : : : :	_	Back-		IDL (ug/L)	
Aluminum_			200		NR I
Antimony_			60		NR :
Arsenic		:	10	:	INR I
Barium		(1200	{	NR :
Beryllium		ŀ	:5		INR I
Cadmium		ł	15		NR:
Calcium		¦	15000 :		NR I
Chromium_		ļ	10		NR I
:Cobalt;		;	50		INF :
:Copper:		1	125		NR I
:Iron		!	100	!	INR :
(Lead		{	(3 ·- i	;	INR
!Magnesium!		1	15000	1	INE
!Manganese!		!	15	}	INR :
{Mercury}	253.70	ł	10.2	0.2	ICV :
Nickel		!	140		:NR:
:Potassium:			15000	1	INR :
Selenium_;			5	•	NR :
Silver			10		INR :
Sodium		-	5000		INR :
!Thallium_!			110		INRI
Vanadium_		=	150		INR :
{Zinc		{	120	!	INR I
!!		l	{		۱۱

Co	nnei	nts	:													
		<u>-</u> -		 	 	 	 	 	 _	 	 	 	 	 -	 	
		<u> </u>		 	 	 	 	 	 	 	 	 	 	 	 	

10
Instrument Detection Limits (Quarterly)

Lab Name: KEYSTONE LAB-HOUSTON Contract: 68-D0-0147

Lab Code: KEYTX Case No.: 17744 SAS No.: SDG No.: MCJE11

ICP ID Number: Date: 02/12/92

Flame AA ID Number:

Furnace AA ID Number: TJASH21

}		ł	1 1		1 1
1	Wave-	1	1		1 1
1	length	Back-	: CRDL :	IDL	+ +
Analyte	(nm)	ground	: (ug/L):	(ug/L)	i Mi
11		ł	!		
Aluminum_		1	1200		INR:
Antimony_		1	160 1	}	INRI
Arsenic	197.30	IBS	110	2.0	(F :
Barium			1200 :		INR
Beryllium		ŧ.	:5		INEL
Cadmium		<u> </u>	15 1		INR I
Calcium		\	15000 1	ļ	INR:
Chromium_		1	110	}	INRI
:Cobalt		}	150		INF I
Copper		1	125		INR
Iron		ì	1100		INR I
Lead		•	(3)		NR!
Magnesium			15000		INR
Manganese		!	15		INR I
Mercury			0.2		INE
Nickel		•	140		INR I
Potassium		•	:		INE:
(Selenium)	196.00		;5	2.0	
Silver			110		NR I
Sodium			15000 8		NR:
Thallium_		-	110		NF:
:Vanadium :		•	;50 ;		INR
Zinc			120 :		INE
1 - 11 - 1		1	150	. 	1 1467 (
· · · · · · · · · · · · · · · · · · ·		'	' i		' i

Comments:		
	 ·····	 ····
	 	

TPO: [] ACTION [] FYI		Region_3
INORGANIC REGIONAL	L DATA ASSESSMENT SUPPL	ARY
CASE NO	LABORATORY KP	477
SDG NO. MCTEUZ (QQ)	DATA USER HAM	5
sow 3/90	REVIEW COMPLETION DA	TE 575/92
NO. OF SAMPLES 10 HATRIX 00		•
REVIEWER [] ESD [] ESAT [4 OTHER, C	CONTRACT/CONTRACTOR_	HNUS
		•
	ICP AA	Hg CYANIDE
- 1. HOLDING TIMES	<u> </u>	N. 10.00 to
2. INITIAL CALIBRATIONS		
3. CONTINUING CALIBRATIONS	$\frac{1}{2}$	
4. FIELD BLANKS ("F" = not applicable)	<u>X</u> - <u>O</u>	
5. LABORATORY BLANKS	$\frac{X}{X}$. <u> </u>
6. ICS		- · · · · · · · · · · · · · · · · · · ·
7. LCS		• • • • • • • • • • • • • • • • • • •
8. DUPLICATE ANALYSIS	$\frac{1}{2} \frac{\mathcal{O}_{\mathcal{A}}}{\mathcal{O}_{\mathcal{A}}} = \frac{1}{2} \frac{\mathcal{O}_{\mathcal{A}}}{\mathcal{O}_{\mathcal{A}}}$	
9. MATRIX SPIKE	<u>0</u> <u>0</u>	<u> </u>
10. MSA		
11. SERIAL DILUTION	<u>X</u>	
12. SAMPLE VERIFICATION :	0	<u> </u>
13. REGIONAL QC ("F" = not applicable)	MX	0 0
14. OVERALL ASSESSMENT	<u>X</u> . X.	<u> </u>
O = No problems or minor problems that do X = No more than about 5% of the data points M = More than about 5% of the data points Z = More than about 5% of the data points A = DPO action requested; use in continuous data points A = DPO action requested	ints are qualified as either estinated. are qualified as estimated. are qualified as unusable. njunction with one of the	above codes.
DPO ACTION ITEMS: Aqueous ms A res	ults for Se in 3 po	table well samples
were erration, suggesting cinalyteal ma		/
mis reported.	infrant florida	In party y
AREAS OF CONCERN:	·	

NO. OF SAMPLES 44 MATRIX SOLD REVIEWER [] ESD [] ESAT [] OTHER, CONTRACT/CONTRACTOR NO S ICP AA Hg CYANIDI 1. HOLDING TIMES 2. INITIAL CALIBRATIONS 3. CONTINUING CALIBRATIONS 4. FIELD BLANKS (F = not applicable) X 5. LABORATORY BLANKS 6. ICS 7. LCS 8. DUPLICATE ANALYSIS 9. MATRIX SPIKE 10. MSA 11. SERIAL DILUTION 12. SAMPLE VERIFICATION 13. REGIONAL QC (F = not applicable) X X = No more than about 5% of the data points are qualified as estimated or unusable. X = No repositions or minor problems that do not affect data unusability. X = No more than about 5% of the data points are qualified as estimated. Z = More than about 5% of the data points are qualified as unusabile. A = DFO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: No WISC Col Co	TPO: MACTION METI		Region
SDG NO. WISE DATA USER DAT	177111	L XV	
REVIEW COMPLETION DATE 5 5 92 NO. OF SAMPLES 4 MATRIX 50 16 REVIEWER [] ESD [] ESAT [] OTHER, CONTRACT/CONTRACTOR N/// S ICP AA Hg CYANID. 1. HOLDING TIMES 2. INITIAL CALIBRATIONS 3. CONTINUING CALIBRATIONS 4. FIELD BLANKS (FF = not applicable) X	100 (>< /1	LIA 17 C	
NO. OF SAMPLES MATRIX SOLD REVIEWER [] ESD [] ESAT ATTIVE CONTRACTICONTRACTOR NO. S ICP AA Hg CYANID 1. HOLDING TIMES	2(4)		12/12
ICP AA Hg CYANIDI 1. HOLDING TIMES 2. INITIAL CALIBRATIONS 3. CONTINUING CALIBRATIONS 4. FIELD BLANKS (F = not applicable) X 5. LABORATORY BLANKS 6. ICS 7. LCS 8. DUPLICATE ANALYSIS 9. MATRIX SPIKE 10. MSA 11. SERIAL DILUTION 12. SAMPLE VERIFICATION 13. REGIONAL QC (F = not applicable) X X = No more than about 5% of the data points are qualified as estimated or unusable. M = More than about 5% of the data points are qualified as sentimated. Z = More than about 5% of the data points are qualified as sentimated. Z = More than about 5% of the data points are qualified as sentimated. Z = More than about 5% of the data points are qualified as sentimated. Z = More than about 5% of the data points are qualified as sentimated. Z = More than about 5% of the data points are qualified as sentimated. Z = More than about 5% of the data points are qualified as sentimated. Z = More than about 5% of the data points are qualified as sentimated. Z = More than about 5% of the data points are qualified as unusable. A = DFO action requagred; use in conjunction with one of the above codes. DFO ACTION ITEMS: A		REVIEW COMPLETION DATE	13/92
1. HOLDING TIMES 2. INITIAL CALIBRATIONS 3. CONTINUINO CALIBRATIONS 4. FIELD BLANKS (*F = not applicable) 5. LABORATORY BLANKS 6. ICS 7. LCS 8. DUPLICATE ANALYSIS 9. MATRIX SPIKE 10. MSA 11. SERIAL DILUTION 12. SAMPLE VERIFICATION 13. REGIONAL QC (*F = not applicable) 14. OVERALL ASSESSMENT O = No problems or minor problems that do not affect data unability. X = No more than about 5% of the data points are qualified as either estimated or unusable. M = More than about 5% of the data points are qualified as estimated. Z = More than about 5% of the data points are qualified as estimated. A = DPO action requested; use in confunction with one of the above codes. DPO ACTION ITEMS: (A) WASCA CUICA AND AND CHARLYSIS Should have when purposed for PD M. CNC SOUMPER (WASCA) CUICA AND AND CHARLYSIS Should have when the PDS (*PCC**) 115 70 -		· · · · · · · · · · · · · · · · · · ·	
1. HOLDING TIMES 2. INITIAL CALIBRATIONS 3. CONTINUING CALIBRATIONS 4. FIELD BLANKS ("F" = sot applicable) X	REVIEWER [] ESD [] ESAT [》,OTHER, (CONTRACT/CONTRACTORN/VU	7
2. INITIAL CALIBRATIONS 3. CONTINUING CALIBRATIONS 4. FIELD BLANKS (TP = not applicable) 5. LABORATORY BLANKS 6. ICS 7. LCS 8. DUPLICATE ANALYSIS 9. MATRIX SPIKE 10. MSA 11. SERIAL DILUTION 12. SAMPLE VERIFICATION 13. REGIONAL QC (TF = not applicable) 14. OVERALL ASSESSMENT O = No problems or minor problems that do not affect data usability. X = No more than about 5% of the data points are qualified as estimated. A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: A = DPO ACTION ITEMS:	·	ICP AA Hg	CYANIDE
3. CONTINUING CALIBRATIONS 4. FIELD BLANKS (F' = not applicable) X X Q Q 5. LABORATORY BLANKS X Q Q 7. LCS 8. DUPLICATE ANALYSIS Q Q Q Q 9. MATRIX SPIKE Q Q Q Q Q 10. MSA 11. SERIAL DILUTION 12. SAMPLE VERIFICATION Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	- 1. HOLDING TIMES	<u></u>	<u> </u>
4. FIELD BLANKS (TF = Bot applicable) 5. LABORATORY BLANKS 6. ICS 7. LCS 8. DUPLICATE ANALYSIS 9. MATRIX SPIKE 10. MSA 11. SERIAL DILUTION 12. SAMPLE VERIFICATION 13. REGIONAL QC (TF = Bot applicable) 14. OVERALL ASSESSMENT O = No problems or minor problems that do not affect data enablity. X = No more than about 5% of the data points are qualified as estimated or unusable. M = More than about 5% of the data points are qualified as estimated. Z = More than about 5% of the data points are qualified as estimated. A = DFO action requested; use in conjunction with one of the above codes. DFO ACTION ITEMS: A	2 INITIAL CALIBRATIONS	- <u>- O</u> - <u>- O - Q - Q - </u>	0
5. LABORATORY BLANKS 6. ICS 7. LCS 8. DUPLICATE ANALYSIS 9. MATRIX SPIKE 10. MSA 11. SERIAL DILUTION 12. SAMPLE VERIFICATION 13. REGIONAL QC (°F = not applicable) 14. OVERALL ASSESSMENT O = No problems or minor problems that do not affect data mashlity. X = No more than about 5% of the data points are qualified as estimated. Z = More than about 5% of the data points are qualified as estimated. Z = More than about 5% of the data points are qualified as unusable. A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: Should have have performed for Plain ONE Soumple (when performed for Plain ONE Soumple (when performed for Plain ONE Soumple (when performed for Plain	3. CONTINUING CALIBRATIONS	0 0 0	· <u>O</u>
6. ICS 7. LCS 8. DUPLICATE ANALYSIS 9. MATRIX SPIKE 10. MSA 11. SERIAL DILUTION 12. SAMPLE VERIFICATION 13. REGIONAL QC ("F = not applicable) 14. OVERALL ASSESSMENT O = No problems or minor problems that do not affect data usability. X = No more than about 5% of the data points are qualified as estimated. Z = More than about 5% of the data points are qualified as unusable. M = More than about 5% of the data points are qualified as unusable. Z = More than about 5% of the data points are qualified as unusable. A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: M MISCO Calcal and for P Manalysis Should Maye Men Penforwed for P Manalysis Should Maye Men Penforwed for P Manalysis Should Maye Men Penforwed for P Manalysis	4. FIELD BLANKS ("F" = not applicable)	<u>x - x _ 2</u>	<u> </u>
7. LCS 8. DUPLICATE ANALYSIS 9. MATRIX SPIKE 10. MSA 11. SERIAL DILUTION 12. SAMPLE VERIFICATION 13. REGIONAL QC ("F" = not applicable) 14. OVERALL ASSESSMENT O = No problems or minor problems that do not affect data usability. X = No more than about 5% of the data points are qualified as estimated. Z = More than about 5% of the data points are qualified as unusable. M = More than about 5% of the data points are qualified as unusable. A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: M MISCO CO (a) + a/ (b) D LUM TS C C C C C C C C C	5. LABORATORY BLANKS	X X	
8. DUPLICATE ANALYSIS 9. MATRIX SPIKE 10. MSA 11. SERIAL DILUTION 12. SAMPLE VERIFICATION 13. REGIONAL QC (°F = not applicable) 14. OVERALL ASSESSMENT O = No problems or minor problems that do not affect data resubility. X = No more than about 5% of the data points are qualified as either estimated. Z = More than about 5% of the data points are qualified as unusable. A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: A = DPO action requested; use in conjunction with one of the above codes.	6. ICS	<u> </u>	!- ·
9. MATRIX SPIKE 10. MSA 11. SERIAL DILUTION 12. SAMPLE VERIFICATION 13. REGIONAL QC (°F = not applicable) 14. OVERALL ASSESSMENT O = No problems or minor problems that do not affect data usability. X = No more than about 5% of the data points are qualified as either estimated or unusable. M = More than about 5% of the data points are qualified as estimated. Z = More than about 5% of the data points are qualified as unusable. A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: M = MSC (954) + An MSA (unulysis) Should have felly performed for Pb in ONC Soumple (where the fDS (904) 115 70 =	7. LCS	6	, *
10. MSA 11. SERIAL DILUTION 12. SAMPLE VERIFICATION 13. REGIONAL QC ("F" = not applicable) 14. OVERALL ASSESSMENT O = No problems or minor problems that do not affect data mashlity. X = No more than about 5% of the data points are qualified as estimated or unusable. M = More than about 5% of the data points are qualified as estimated. Z = More than about 5% of the data points are qualified as estimated. Z = More than about 5% of the data points are qualified as estimated. A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: M	8. DUPLICATE ANALYSIS	<u> 0 = 2 = 0 = 0 = 0</u>	<u> </u>
11. SERIAL DILUTION 12. SAMPLE VERIFICATION 13. REGIONAL QC ("F" = not applicable) 14. OVERALL ASSESSMENT O = No problems or minor problems that do not affect data usability. X = No more than about 5% of the data points are qualified as either estimated or unusable. M = More than about 5% of the data points are qualified as estimated. Z = More than about 5% of the data points are qualified as unusable. A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: A MSA Challes Should have been performed for Pb in ONE Sommable (where the PDS (pcgr > 115 70 =	9. MATRIX SPIKE	0.0.0	<u></u>
13. REGIONAL QC (°F = not applicable) X	10. MSA	<u> </u>	• • • • • • • • • • • • • • • • • • •
13. REGIONAL QC ("F = not applicable) 14. OVERALL ASSESSMENT O = No problems or minor problems that do not affect data usability. X = No more than about 5% of the data points are qualified as either estimated or unusable. M = More than about 5% of the data points are qualified as estimated. Z = More than about 5% of the data points are qualified as unusable. A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: (Ab MISCA) Cylater (b) New Its and ONE SE (1854) the An MSA Cynalysis Should have fully performed for Pb in ONE Soumple when the PDS (1964) 115 70 =	11. SERIAL DILUTION	o <u>O</u> n manife a same	
O = No problems or minor problems that do not affect data usability. X = No more than about 5% of the data points are qualified as either estimated or unusable. M = More than about 5% of the data points are qualified as estimated. Z = More than about 5% of the data points are qualified as unusable. A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: Ab misca cycleted by the Mean for plant of the above codes. Should have been performed for Plant of the plant of	12 SAMPLE VERIFICATION	<u> </u>	
O = No problems or minor problems that do not affect data usability. X = No more than about 5% of the data points are qualified as either estimated or unusable. M = More than about 5% of the data points are qualified as estimated. Z = More than about 5% of the data points are qualified as unusable. A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: Ab wiscald after by An MSA analysis Should have were renformed for Physical Conference of the confe	13. REGIONAL QC ("F" = not applicable)		<u> </u>
X = No more than about 5% of the data points are qualified as either estimated or unusable. M = More than about 5% of the data points are qualified as estimated. Z = More than about 5% of the data points are qualified as unusable. A = DPO action requested; use in conjunction with one of the above codes. DPO ACTION ITEMS: Ab MISCO Cyleter 6 fb Mean Its and CNE Se (454)t An MSA Cynalysis Should have feen performed for Pb in ONE Soumple (where the PDS (peer > 115 70 =	14. OVERALL ASSESSMENT	X X	
Should have been performed for Pb in one sample where the PDS rocer > 115 70=	X = No more than about 5% of the data point M = More than about 5% of the data point Z = More than about 5% of the data points A = DPO action requested; use in co	sints are qualified as either estimated or was are qualified as estimated. The are qualified as unusable. The above continued in the ab	odes.
one sample where the PDS recei > 115 70=			/
one sample where the FDS recei >115 70=			<u> </u>
		· 1/ · · · · · · · · · · · · · · · · · ·	<u> </u>
AREAS OF CONCERN:	UNG SOMMOR WHERE	Me FDS rocar >115	10-
	AREAS OF CONCERN:		

Man

FURNACE-AA L_.ICH SHEET KEYSTONE LAB-HOUSTON

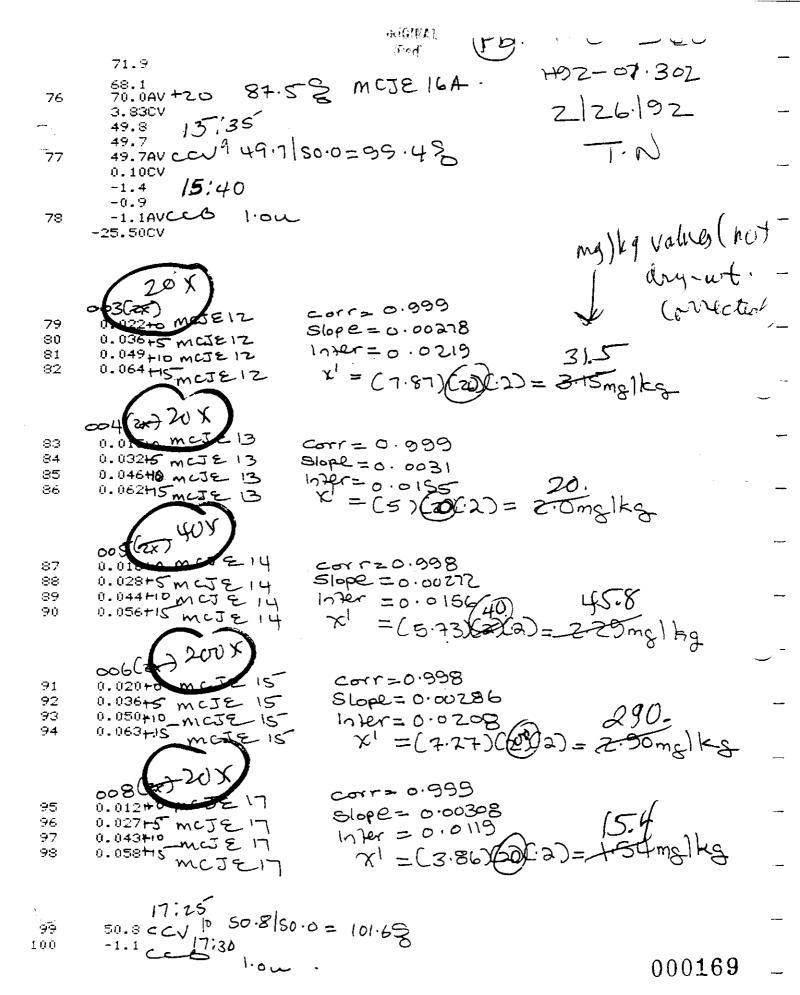
D.C. #

	1			
ELEMENT		INSTRUMENT	CRDL	Note: Use proper units and flags
DATE	2-23-92	ANALYST	IDL	for final concentration

			INITIAL DATA			DILUTION DATA			MSA DATA			ANALYTE CONC		
CUP NO	SAMPLE OR STD ID	CLIENT ID NO.	AVG CONC	RPD	ANAL SPIKE REC %	DIL FACT	AVG CONC	RPD .	ANAL SPIKE REC %	DIL FACT	CALC CONC INTCP	DIG FACT	UG/L	MG/KG
27		R	11.1	11.44	8604					ļ 				
28		MISERO	7./				i							8.6
29		A	9.3	3.01	42%								_	
30		MESE 21	0.9					The state of						0.4
21.		A	8-2	9.62	8/%						3			_
32		Mc 5E22	2.7			l	ab 1	nisr	ead as	27:	shoulde	(22)		0.4:
33		A	7.6	16.71	5-40/0			: - -						
34		HCSK23	1.9					; 					_	0.4
75		A	8.4	14.76	862									
36	0	cer	47.8	4.28									50.3	96%
77	00	ces	0.6										2	
38	3	ME51574	0.7			1K	28							0.6
39	100	A	14.2	40.8		12	12.3	20:08	25%					

Furnace-AA Bench Sheet (8/88)

Metal Pb IDI I rigit


17744 SDGMUE 11

U= < IDL Graphite Furnace Spike Recovery Evaluation Form

1		Instr. Le	vel	PDS		Diluted	Diluted pos	MSA Result	Final Result
	Sample ID	Result		Recovery		Result	Recovery	(if needed)	Reported Mg/Kg
Jun * []	MUTEI	30].	$\langle j \rangle$	53(+	<u>لز)</u>	5,7x 50	30 m.cn		113.40
<u></u>	(2	154		62	_	12.4×10	84 -	>7.9×20	62.7
_	13	113.		71		24.8 x10	14	5.0 x 20	33.3
	14	198.2		70		8,7×20	79	5.7x40	105.5
_	15	870		<u> —</u>		18.7×100	74	7.3×200	342.
elow #	ط	有	_	hi'		83. X 100	125 (hi)	-	4810V
]_		107.	<u> </u>	50	 -	8.6×10	84	3.9×20	35.70
<u> </u>		90.5		84		6.9×10	89	*(18.2
-	_ IED	92.6	īV	71	L	7.3×10	113		19,20
ļ.,	185		<u>h:)</u>	^		9.1×10			110.70
<u> </u>	19	70.3	[_:N	94		ν _Λ	101	<u> </u>	16.9 V
-	20	362!	h')	7 .	11)	8.2×100	106		253.0
	21	16U >	V	hı		6.7×2(10)			358.V
	22	87.4		101		8,3×10	II (Apr		22.26
-	23	165.4	.:_	100	1	7.8×10	113		20.2
}	~~	60.6		97					17.8 Kg
1	NCTES LPL	· · · · · · · · · · · · · · · · · · ·				5.8x50	115		113
7	ALTE16 DL					52,5x200	88		4810
_		· - · · · ·				-			
-			1			12/1/21		10/	
-		Avi	내		-	PALITS	Mu		<u> </u>
-		X	4	4	2	r lat	5 016	TOW!	<u> </u>
F		TA	1		I			~(_
		1		RE-	97	tu 770	n tac	10/23	
		11/4	D	a (unt	when	calcu	lotter
			0	MI		< #C			17
		a:5. w		7	,	- /TU		L 18. TX	L

```
Se-S As-S
SN= 000031
                       14 A
          008.7
                 HIGH
Conc
      1
Mean
          008.7
                 HIGH
P/H
          0.047
                 0.254
          007.6
                 HIGH
Conc
                       810%
          008.1
                 HIGH
Yean
          0.054
                 0.237
 /H
         Se-S As-S
                 HIGH
          008.1
Mean
          000.8
SD
RSD
          09.62
         Se-S As-S
                         15 MCSE22
SN = 000032
Conc
      1
          001.0
                 040.2
Mean
          001.0
                 040.2
P/H
          0.006
                 0.133
Conc
          003.5
                 037.5
Mean
          002.2
                 038.8
                        0.4W
P/H
          0.005
                 0.133
         5e-5 A3-S
Mean
          002.2 038.8
SD
          001.8
                 001.9
RSD
          80.00
                 04.92
         Se-S As-S
SN= 000033
                 060.4 /5 A
          006.7
Conc
Mean
          006.7
                 060.4
          0.052
                 0.189
P/H
          008.5
Conc
                 057.5
          007.6
                 058.9
Mean
                         59% 100%
P/H
          0.052
                 0.198
         Se-S As-S
∝ean
          007.6
                 058.9
                 002.1
SD
          001.3
          16.71
                 03.48
         Se-S As-S
                          16 MC5E23
SN= 000034
          002.4
                 021.1
Conc
       1
Mean
          002.4
                 021.1
          0.005
                 0.075
P/H
       2
          001.5
                 021.9
Conc
Mean
          001.9
                  021.5
          0.003
                 0.088
P/H
         Se-S As-S
          001.9
                  021.5
Mean
SD
          000.6
                  000.6
RSD
          33.68
                  02.60
         Se-S As-S
SN= 000035
                  046.0
Conc
          009.5
                  046.0
Mean
          009.5
                        86% /100%
P/H
          0.059
                  0.186
Conc
          007.7
                  040.8
Nean
          008.6
                  043.4
P/H
          0.038
                  0.168
         Se-S As-S
''`an
           008.6
                  043.4
           001.3
                  003.7
RSD
           14.76
                  08.45
```

Same Comment

					á.	The Man
		ಚಿ⊈್ವಾಲಾ≎್ ಹಾ	// \	المواهدية الو		en en en en en en en en en en en en en e
	PE560 T. Mang1	Bally Log Run For	fpb by turr	ale	17:35	P
	2/26/923148:00	1 CCU9:15	33 +20 6	5 614(2000)		
	2/26/92BLK8:00 3.0	3 HOZ-01.302	34 016 6	+20	17:30 CCB	
	50.0	3 002	35 t20 6	0157107)	<u>.</u>	
		+20	35 +20 12/10 36 CCJ 12/15	120	77	
	TCU(2x)	003	الات التي عود التي التي عود التي التي التي التي التي التي التي التي	016(10Y)	3	<u> </u>
	T.C28:25	4-20	38 017 10	11		;
-	CCV 820	OOU	39 +20 11	15:05	1	
	CC8835	+20	40 002 (SOX)	J /3//U	41.4	
	CRA '	005		002/SOX)		
	025	+20	42_03(10x)	1		
\$200 L	PBGA 1	1	43 TZO 75		1	
	LCSS(XX)	+20	UL DOU LOX)	120		
	LCSSA	CCVIB:IS	44 004(10x), 45 +20 1	- 15:35 - V		
	19:005	10:20	46 005 (zox)	¥	1	dution
	CEB :10	15 007	47 720134.05	mue / los	20X 🔨	Pactri
		16 +20.	48 CCVA3F10	203(0)		for
		1	1 1.5.15	1 - 1 .	1	AZM
		18 +20	50 00b (100x) SI + ZD	115		analyse
		7 009	C1 4-72	mus et 7:0x	20X	
		20 +20	52(007(100X)	+5		
H			52 (00 1 (1004)	+10	1)
		22 +20		. 7		
		3 011(50K)	S9_000(100)	+15 nutry (Z _V) =	140x	
	0	24 CCV 11:10	51 M9(10x)	H5 26X		<u> </u>
	•	أمسين ١١١ سا	57+20	410	***	
	y	26 OIZ	58 OH(20X)	H500		
		1	59 +20		OUX	
	• · · · · · · · · · · · · · · · · · · ·	28 013	60 ECV 14:10	Tu 1/22/43		
	· :	9120	61 ces 14:15	2010		T
-	The second secon	30 DI4	62 0 11 (10x)	1.1.000 E		,
14				500 (XX) =-	20x	
-	,		120_6, dim	+5	000	′0 <u>‡</u>
) · · · · · · · · · · · · · · ·	50 BV:	+10-		
*# 1 .	•				-	

```
Pb. P.T. S60
            14:15
     -1.6
                                          H92-01.302
     -1.4
     -1.5AVCS 10U
                                            2/26/92
61
    -11.85CV
      8.6
                      1108 m CJE 18(splc)
      9.6
9.1AV 011 (0x)
                                    MCJE 20
      8.2AV -13 (100x)
                    (8.2)(100)(2) = 164mg/kg
63
     29.2
     29.5
                    105.53
                                    MCJE 30A
     29.3AV +20
64
     0.60CV
      6.5
                                            MCJEZI
      6.8
6.7AV =14(200x) (6.7)(200)(2) = 268 mg/kg
65
     2.77CV
     27.3
                                          m CJE21A
                       101.55
     26.8
     27.0AV +20
66
     1.48CV
      8.6
     (8:3×10×2)=
67
                                         16.6melke
     4.34CV
     31.6
                            NO MSA MCJE 22A
     31.4
     31.5AV 十20
     0.44CV
                        (7.8) (10) = 15.6 mg/kg
      7.5
      7.8AV 016(10x)
69
     6.24CV
     31.3
                       113.5
                                        MCJZ23A
     29.8
     30.5AV +0 0
70
     3.58CV
     52.3
                      51.1/SO.0 = 102.23
     49.9
     51. IAV CEN 9
71
     3.33CV
     -1.3
                        1000
     -1.4
     -1.3AVCC
72
                                          MCJE 11
    -0.83CV
      5.6
                       S.8.XSoX.3) =
                                        Samelka
      5.8AV 002(50X)
73
     4.19CV
                                         MCJE 11A
     28.8
                        115 3
     28.8
     28.8AV +20
                                           ·m cje 16
     0.10CV
     52.3
                     ·(52.5)(200)(2) = 2100ms/kg
     52.5AV 27 (ZOOX)
75
```

APPENDIX B

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

COMPOUND

10061-02-6----Trans-1,3-Dichloropropene

79-34-5----1,1,2,2-Tetrachloroethane

108-10-1----4-Methyl-2-Pentanone

127-18-4----Tetrachloroethene

108-90-7-----Chlorobenzene

100-41-4-----Ethylbenzene

1330-20-7------Xylene (total)

75-25-2----Bromoform

591-78-6----2-Hexanone

108-88-3-----Toluene

100-42-5----Styrene_

EPA SAMPLE NO

Q

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02

Matrix: (soil/water) WATER Lab Sample ID: 477446

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: not dec. ____ Date Analyzed: 02/02/92

GC Column: DB-624 ID: 0.530 (mm) Dilution Factor: 1.0

Soil Extract Volume: _____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) <u>UG/L</u>

- 1		l	Į.	l
	74-87-3Chloromethane	10	ប	
į	74-83-9Bromomethane	10	U	
	75-01-4Vinyl Chloride	10	U	}
	75-00-3Chloroethane	10	ַ ט	
	75-09-2Methylene Chloride	24	В	
	67-64-1Acetone	14		
	75-15-0Carbon Disulfide	10	U	
	75-35-41,1-Dichloroethene	10	U	
	75-34-31,1-Dichloroethane	10	U	
	540-59-01,2-Dichloroethene (total)	10	U	
	67-66-3Chloroform	10	U	
	107-06-21,2-Dichloroethane	10	ַ	
	78-93-32-Butanone	10	U	
	71-55-61,1,1-Trichloroethane	10	U	
	56-23-5Carbon Tetrachloride	10	ט	
	75-27-4Bromodichloromethane	10	U	
	78-87-51,2-Dichloropropane	10	ប	
	10061-01-5cis-1,3-Dichloropropene	10	Ŭ	
	79-01-6Trichloroethene	10	U	
	124-48-1Dibromochloromethane	10	ַ	
	79-00-51,1,2-Trichloroethane	10	U	
	71-43-2Benzene	10	Ŭ	

U

U

U

U

U

U

U

Ü

U

U

J

10

10

10

10

10

10

10

10

10

10

1

CAS NO.

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: COMPUCHEM,	RTP	Contract: 68D	10083	CHY02
Lab Code: COMPU	Case No.: <u>17744</u>	SAS No.: 657	9HO SDG	No.: CHY02
Matrix: (soil/water)	WATER	Lab	Sample ID:	477446
Sample wt/vol:		Lab	File ID:	CN077446B51
Level: (low/med)	LOW	Date	Received:	01/29/92
% Moisture: not dec.		Date	Analyzed:	02/02/92

GC Column: DB-624 ID: 0.530 (mm) Dilution Factor: ____1.0

Soil Extract Volume: _____ (uL) Soil Aliquot Volume: ____(uL)

CAS NUMBER EST. CONC. COMPOUND NAME RT Q

Number TICs found: __0

All Training

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02

Matrix: (soil/water) WATER Lab Sample ID: 477446

Sample wt/vol: 1000 (g/mL) ML Lab File ID: G2J77446C21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: ____ decanted: (Y/N) ___ Date Extracted: 02/03/92

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 02/06/92

Injection Volume: 2.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: ____

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

CONCENTRATION UNITS:

U 108-95-2----Phenol 10 111-44-4-----bis(2-Chloroethyl)Ether 10 U 95-57-8----2-Chlorophenol 10 U U 541-73-1-----1,3-Dichlorobenzene 10 106-46-7-----1,4-Dichlorobenzene 10 U U 95-50-1-----1,2-Dichlorobenzene_ 10 95-48-7----2-Methylphenol 10 U 108-60-1----2,2'-Oxybis(1-Chloropropane)_ U 10 106-44-5----4-Methylphenol U 10 621-64-7----N-Nitroso-Di-n-Propylamine___ U 10 U 67-72-1-----Hexachloroethane 10 Ū 98-95-3-----Nitrobenzene 10 78-59-1-----Isophorone U 10 U 88-75-5----2-Nitrophenol 10 105-67-9----2,4-Dimethylphenol_ U 10 111-91-1-----bis(2-Chloroethoxy)Methane U 10 U 120-83-2----2,4-Dichlorophenol 10 120-82-1-----1,2,4-Trichlorobenzene U 10 91-20-3-----Naphthalene U 10 U 106-47-8----4-Chloroaniline 10 U 87-68-3-----Hexachlorobutadiene 10 U 59-50-7----4-Chloro-3-Methylphenol 10 U 91-57-6----2-Methylnaphthalene 10 U 77-47-4-----Hexachlorocyclopentadiene 10 88-06-2-----2,4,6-Trichlorophenol_ 10 U 95-95-4-----2,4,5-Trichlorophenol_ 25 U 91-58-7----2-Chloronaphthalene 10 U 88-74-4----2-Nitroaniline 25 U 131-11-3-----Dimethyl Phthalate 10 U U 208-96-8-----Acenaphthylene 10 606-20-2----2,6-Dinitrotoluene 10 U Ū 99-09-2----3-Nitroaniline 25 U 83-32-9-----Acenaphthene 10

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SD		CHY02	
Matrix: (soil/water) <u>WATER</u> Lab Sample ID	: <u>477</u>	446	-
Sample wt/vol: 1000 (g/mL) ML Lab File ID:	<u> G2J</u>	77446C21	
Level: (low/med) LOW Date Received	: <u>01/</u>	29/92	
% Moisture: decanted: (Y/N) Date Extracte	d: <u>02/</u>	03/92	
Concentrated Extract Volume: 1000 (uL) Date Analyzed	: 02/	06/92	
Injection Volume: 2.0(uL) Dilution Fact	or: _	1.0	
GPC Cleanup: (Y/N) N pH: CONCENTRATION UNI CAS NO. COMPOUND (ug/L or ug/Kg) U		Q	_
108-95-2Phenol 111-44-4bis(2-Chloroethyl)Ether 95-57-82-Chlorophenol 541-73-11,3-Dichlorobenzene 106-46-71,4-Dichlorobenzene 95-50-11,2-Dichlorobenzene 95-48-72-Methylphenol 108-60-12,2'-Oxybis(1-Chloropropane) 106-44-5	10 10 10 10 10 10 10 10 10 10 10 10 10 1	טמטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט	

FORM I SV-1

88-06-2----2,4,6-Trichlorophenol

91-58-7----2-Chloronaphthalene

131-11-3-----Dimethyl Phthalate

606-20-2----2,6-Dinitrotoluene

88-74-4----2-Nitroaniline

208-96-8-----Acenaphthylene

99-09-2----3-Nitroaniline

83-32-9-----Acenaphthene

95-95-4----2,4,5-Trichlorophenol

3/90

10

25

10

25

10

10

10

25

10

U

U

U

U

U

U

U

U

Ū

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

CHY02

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02

Matrix: (soil/water) WATER

Lab Sample ID: 477446

Sample wt/vol: 1000 (g/mL) ML

Lab File ID: <u>G2J77446C21</u>

Level: (low/med) LOW

Date Received: 01/29/92

% Moisture: ____ decanted: (Y/N) ___

Date Extracted: 02/03/92

Concentrated Extract Volume: 1000 (uL)

Date Analyzed: 02/06/92

Injection Volume: 2.0(uL)

Dilution Factor: ____1.0

'PC Cleanup: (Y/N) N pH: ____

Number TICs found: __7

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN	12.19	5	J
2.	LABORATORY ARTIFACT	12.27	11	BJ
3.	UNKNOWN HYDROCARBON	13.20	2	J
4.	UNKNOWN HYDROCARBON	13.70	3	J
5.	UNKNOWN HYDROCARBON	14.17	3	J
6.	UNKNOWN	14.65	3	J
7.	UNKNOWN	16.09	10	J

Q

CHY02

Lab Name: COMPUCHEM.RTP

CAS NO.

Contract: 68D10083

Table British

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02

Matrix: (soil/water)WATER Lab Sample ID: 477446

Sample wt/vol: 1000(g/ml)ML Lab File ID:

COMPOUND

% Moisture: decanted: (Y/N) Date Received: 01/29/92

Extraction: (SepF/Cont/Sonc) SEPF Date Extracted: 01/30/92

Concentrated Extract Volume: 10000(uL) Date Analyzed: 02/04/92

Injection Volume: 2.0(uL) Dilution Factor: 1

GPC Cleanup: (Y/N)N pH: Sulfur Cleanup: (Y/N)N

CONCENTRATION UNITS: (ug/L or ug/Kg)<u>UG/L</u>

	(-9/5 0-	. ~ 3 / 3 / 2 /- - -	×
319-84-6	alpha-BHC	0.050	ָ ט
319-85-7	beta-BHC	0.050	
319-86-8	delta-BHC	0.0501	U
58-89-9	gamma-BHC (Lindane)	0.050	Ū_
76-44-8	Heptachlor	0.050	U
309-00-2	Aldrin	0.050	U
1024-57-3	Aldrin Heptachlor epoxide	0.050	U
959-98-8	Endosulfan I		<u>U</u>
60-57-1	Dieldrin	0.10	U
72-55-9	4,4'-DDE	0.10	U
72-20-8	Endrin	1 0.101	IJ
33213-65-9	Endosulfan II	1 0.101	ប
72-54-8	4,4'-DDD_ Endosulfan sulfate	0.10	U
1031-07-8	Endosulfan sulfate	0.10	<u>U</u>
50-29-3	4,4'-DDT	!0.10	<u>U</u>
72-43-5	Methoxychlor	10.501	<u>U</u>
53494-70-5	Endrin ketone	10.101	<u>U</u>
7421-93-4	Endrin aldehyde	1	U
5103-71-9-~-	alpha-Chlordane	(0.050)	U .
5103-74-2	gamma-Chlordane	0.050	U
8001-35-2	Toxaphene	1	U
12674-11-2	Aroclor-1016	1 <u>1.0</u> 1	<u>U</u>
11104-28-2	Aroclor-1221	2.0	<u>U</u>
11141-16-5	Aroclor-1232		<u>U</u>
53469-21-9	Aroclor-1242	<u>1.0</u>	<u>U</u>
12672-29-6	Aroclor-1248	1.0	<u>u</u>
11097-69-1	Aroclor-1254		
11096-82-5	Aroclor-1260		<u>U</u>

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

COMPOUND

EPA SAMPLE NO.

Lab Name: COMPUCHEM.RTP	Contract: <u>68D10083</u>	CHY03
Lab Code: COMPU Case No.: 17744	SAS No.: <u>6579HO</u> SDG	No.: CHY02
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	477451
Sample wt/vol: 5.0 (g/mL) ML	Lab File ID:	CN077451B51
Level: (low/med) LOW	Date Received:	01/29/92
% Moisture: not dec	Date Analyzed:	02/02/92
GC Column: <u>DB-624</u> ID: <u>0.530</u> (mm)	Dilution Factor	1.0
Soil Extract Volume: (uL)	Soil Aliquot Vo	olume:(uL)

CONCEN	TR	MOITA	UN	ITS:
(ug/L	or	ug/Kg)	UG/L

74-87-3Chloromethane	10	U
74-83-9Bromomethane	10	Ū
75-01-4Vinyl Chloride	10	ט
75-00-3Chloroethane	10	שׁ
75-09-2Methylene Chloride	37	В
67-64-1Acetone	10	ט
75-15-0Carbon Disulfide	10	U
75-35-41,1-Dichloroethene	10	U
75-34-31,1-Dichloroethane	10	U
540-59-01,2-Dichloroethene (total)	10	U
67-66-3Chloroform	10	U
107-06-21,2-Dichloroethane	10	U
78-93-32-Butanone	10	υ
71-55-61,1,1-Trichloroethane	10	U
56-23-5Carbon Tetrachloride	10	ש
75-27-4Bromodichloromethane	10	U
78-87-51,2-Dichloropropane	10	ט
10061-01-5cis-1.3-Dichloropropene	10	U
79-01-6Trichloroethene	10	ប
124-48-1Dibromochloromethane	10	U
79-00-51,1,2-Trichloroethane	10	ט
71-43-2Benzene	10	ט
10061-02-6Trans-1,3-Dichloropropene	10	שׁ
	10	ש
75-25-2Bromoform	10	บ
591-78-62-Hexanone	10	U
127-18-4Tetrachloroethene	10	U
79-34-51,1,2,2-Tetrachloroethane	10	ט
	10	שׁ
108-88-3Toluene	10	ប
100-41-4Ethylbenzene	10	U
100-42-5Styrene	10	ט
1330-20-7Xylene (total)	10	שׁ

CAS NO.

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

FDA	SAMPLE	NO
LFA		NO

Lab Name: COMPUCHEM.RTP	Contract: 68D10083
Lab Code: COMPU Case No.: 17744	SAS No.: 6579HO SDG No.: CHY02
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: 477451
Sample wt/vol:	Lab File ID: <u>CN077451B51</u>
Level: (low/med) <u>LOW</u>	Date Received: 01/29/92
Moisture: not dec	Date Analyzed: 02/02/92
GC Column: DB-624 ID: 0.530 (mm)	Dilution Factor: 1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

Soil Aliquot Volume: ____(uL)

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 76~13-1	ETHANE, 1,1,2-TRICHLORO-1,2,	4.82	10	JN

Soil Extract Volume: _____ (uL)

Number TICs found: __1

Celling Fred

EPÁ SAMPLE NO.

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CHY03 Contract: 68D10083 Lab Name: COMPUCHEM.RTP Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02 Matrix: (soil/water) WATER Lab Sample ID: 477451 Sample wt/vol: 1000 (g/mL) ML Lab File ID: GH077451B52 Date Received: 01/29/92 Level: (low/med) <u>LOW</u> % Moisture: ____ decanted: (Y/N) ___ Date Extracted: 02/01/92 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 02/04/92 Injection Volume: _____2.0(uL) Dilution Factor: _____1.0

TPC Cleanup: (Y/N) N pH: ____

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

108-95-2Phenol	10	U
111-44-4bis(2-Chloroethyl)Ether	10	U
95-57-82-Chlorophenol	10	ט
541-73-11,3-Dichlorobenzene	10	שׁ
LO6-46-71,4-Dichlorobenzene	10	ប
95-50-11,2-Dichlorobenzene	10	ט
25-48-72-Methylphenol	10	ש
108-60-12.2'-Oxybis(1-Chloropropane)	10	ប
LO6-44-54-Methylphenol	10	ប
L06-44-5Nethylphenol	10	ט
57-72-1Hexachloroethane	10	บ
98-95-3Nitrobenzene	10	ับ
78-59-1Isophorone	10	ប
38-75-52-Nitrophenol	10	ט
L05-67-92,4-Dimethylphenol	10	U
111-91-1bis(2-Chloroethoxy)Methane	10	U
120-83-22,4-Dichlorophenol	10	U
120-82-11,2,4-Trichlorobenzene	10	U
91-20-3Naphthalene	10	U
106-47-84-Chloroaniline	10	U
37-68-3Hexachlorobutadiene	10	ប
59-50-74-Chloro-3-Methylphenol	10	U
91-57-62-Methylnaphthalene	10	U
77-47-4Hexachlorocyclopentadiene	10	ប
88-06-22,4,6-Trichlorophenol	10	U
95-95-42,4,5-Trichlorophenol	25	U
91-58-72-Chloronaphthalene	10	U
38-74-42-Nitroaniline	25	ט
l31-11-3Dimethyl Phthalate	10	ט
208-96-8Acenaphthylene	10	ט
506-20-22,6-Dinitrotoluene	10	U
99-09-23-Nitroaniline	25	U
33-32-9Acenaphthene	10	U

FORM I SV-1

SEMIVOLATILE ORGANICS ANALYSIS I	DATA SHEET
Lab Name: <u>COMPUCHEM.RTP</u> Cont	cract: 68D10083
Lab Code: COMPU Case No.: 17744 SAS	No.: 6579HO SDG No.: CHY02
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: 477451
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: <u>GH077451B52</u>
Level: (low/med) LOW	Date Received: 01/29/92
% Moisture: decanted: (Y/N)	Date Extracted: 02/01/92
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 02/04/92
Injection Volume:2.0(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH: CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q
51-28-52,4-Dinitrophenol	25 U 10 U

51-28-52,4-Dinitrophenol	j 25	U
100-02-74-Nitrophenol	25	ט
132-64-9Dibenzofuran	_ 10	U
121-14-22,4-Dinitrotoluene	10	U
84-66-2Diethylphthalate		្រប]
7005-72-34-Chlorophenyl-phenylether_	_ 10	ן ט
86-73-7Fluorene		U
100-01-64-Nitroaniline	{	ן ט
534-52-14,6-Dinitro-2-Methylphenol_	25	ן ט
86-30-6N-Nitrosodiphenylamine (1)	_ 10	U
101-55-34-Bromophenyl-phenylether	10	ן ט
118-74-1Hexachlorobenzene	10	ט
87-86-5Pentachlorophenol		ן ט
85-01-8Phenanthrene_	10	ן ט
120-12-7Anthracene) U
86-74-8Carbazole	10	ן ט
84-74-2Di-n-Butylphthalate	10	ן ט
206-44-0Fluoranthene	_} 10	ប
129-00-0Pyrene	10	ן ט
85-68-7Butylbenzylphthalate	10	ט
91-94-13,3'-Dichlorobenzidine	10	\ U
56-55-3Benzo(a)Anthracene	10	ן ט
218-01-9Chrysene	10	ט
117-81-7bis(2-Ethylhexyl)Phthalate	—(10	lu j
117-84-0Di-n-Octyl Phthalate	10	ן טן
205-99-2Benzo(b)Fluoranthene	_} 10	บ
207-08-9Benzo(k)Fluoranthene	_ 10	υ
50-32-8Benzo(a) Pyrene	10	[ប]
193-39-5Indeno(1,2,3-cd)Pyrene	10	U
53-70-3Dibenz(a,h)Anthracene	10	ប
191-24-2Benzo(g,h,i)Perylene	10	ט ו
]

(1) - Cannot be separated from Diphenylamine

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: COMPUCHEM.	RTP Contract	: 68D10083	CHY03
Lab Code: COMPU	Case No.: <u>17744</u> SAS No.	: 6579HO SDG	No.: <u>CHY02</u>
Matrix: (soil/water)	WATER	Lab Sample ID:	477451
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	GH077451B52
Level: (low/med)	LOW	Date Received:	01/29/92
% Moisture:	decanted: (Y/N)	Date Extracted:	02/01/92
Concentrated Extract	Volume: 1000 (uL)	Date Analyzed:	02/04/92
Injection Volume:	2.0(uL)	Dilution Factor	:1.0
GPC Cleanup: (Y/N)	<u>N</u> pH:		
Number TICs found:		NTRATION UNITS: or ug/Kg) <u>UG/L</u>	
CAS NUMBER	COMPOUND NAME	RT EST.	CONC. O

CHY03

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02

Matrix: (soil/water)WATER Lab Sample ID: 477451

Sample wt/vol: 1000(g/ml)ML Lab File ID:

% Moisture: decanted: (Y/N) Date Received: 01/29/92

Extraction: (SepF/Cont/Sonc) SEPF Date Extracted: 01/30/92

Concentrated Extract Volume: 10000(uL) Date Analyzed: 02/04/92

Injection Volume: 2.0(uL) Dilution Factor: 1

GPC Cleanup: (Y/N)N pH: Sulfur Cleanup: (Y/N)N

CAS NO. COMPOUND COMP

319-84-6alpha-BHC	0.050 U
319-85-7beta-BHC	0.050 U
319-86-8delta-BHC	0.050 U
58-89-9gamma-BHC (Lindane)	0.05010
76-44-8Heptachlor	0.050 U
309-00-2Aldrin	0.050 U
309-00-2Aldrin_ 1024-57-3Heptachlor epoxide	0.050
959-98-8Endosulfan I	0.050 U
60-57-1Dieldrin	0.10 U
72-55-94,4'-DDE	0.10 U
72-20-8Endrin	1 0.10IU
33213-65-9Endosulfan II	0.10 U
72-54-84,4'-DDD	0.10 U
1031-07-8Endosulfan sulfate	0.10
50-29-34,4'-DDT	0.10 U
72-43-5Methoxychlor	0.5010
53494-70-5Endrin ketone	0.10 U
7421-93-4Endrin aldehyde	0.10 U
5103-71-9alpha-Chlordane	0.05010
5103-74-2gamma-Chlordane	0.05010
8001-35-2Toxaphene	5.010
12674-11-2Aroclor-1016	1.00
11104-28-2Aroclor-1221	2.010
11141-16-5Aroclor-1232	1.010
53469-21-9Aroclor-1242	
12672-29-6Aroclor-1248	1.00
11097-69-1Aroclor-1254	1.00
11096-82-5Aroclor-1260	1.0\U

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

Soil Extract Volume: _____ (uL)

EPA SAMPLE NO.

Soil Aliquot Volume: ____(uL)

Lab Name: COMPUCHEM.RTP	CHY04 Contract: 68D10083
Lab Code: COMPU Case No.: 17744	SAS No.: 6579HO SDG No.: CHY02
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: 477457
Sample wt/vol:	Lab File ID: <u>CN077457B51</u>
Level: (low/med) LOW	Date Received: 01/29/92
% Moisture: not dec	Date Analyzed: 02/02/92
GC Column: <u>DB-624</u> ID: <u>0.530</u> (mm)	Dilution Factor: 1.0

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L

CAS NO.	COMPOUND	(ug/L or u	9/19) 9	<u> </u>	Q ——
74-87-3	Chloromethane			10	ט
74-83-9	Bromomethane		<u> </u>	10	U
75-01-4	Vinyl Chloride			10	ซ
75-00-3	Chloroethane		_	10	U
75-09-2	Methylene Chlorid	е	_	57	В
			_	10	ע
75-15-0	Acetone Carbon Disulfide		_1	10	שׁ
75-35-4	1.1-Dichloroethen	a	_	10	ן ט
75-34-3	1,1-Dichloroethan	e	_	10	ן ט
540-59-0	1,2-Dichloroethen	e (total)	_	10	บ
67-66-3	Chloroform			10	lσ
107-06-2	1,2-Dichloroethan	е	_	10	U
79-02-2	?_Putamana		_	10	U
71-55-6	1,1,1-Trichloroet	hane	_	10	U
56-23-5	Carbon Tetrachlor	ide		10	U
75-27-4	Bromodichlorometh	ane	_	10	Ū
78-87-5	1,2-Dichloropropa	ne	-	10	lυ
10061-01-5	cis-1.3-Dichlorop	ropene	-	10	Ū
79-01-6	Trichloroethene		_{	10	Ū
124-48-1	Dibromochlorometh	ane	_	10	Ü
79-00-5	1,1,2-Trichloroet	hane	-	10	Ū
71-43-2	Benzene		-	10	บิ
10061-02-6	Trans-1, 3-Dichlor	opropene	-	10	ט
75-25-2	Bromoform	· • • · · · · · · · · · · · · · · · · ·	-	10	U
108-10-1	4-Methyl-2-Pentan	one	_	10	Ū
591-78-6	2-Hexanone		-	10	ט
	Tetrachloroethene			10	Ü
79-34-5	1,1,2,2-Tetrachlo	roethane	-	10	"
108-88-3	Toluene		_	10	Ū
108-90-7	Chlorobenzene		-	10	Ū
100-41-4	Ethylbenzene		_	10	บ
100-42-5	Styrene		-	10	บี
	Xylene (total)		- 1	10	บี

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

Lab Name: COMPUCHEM.R	Contract	: 68D10083	CHY04
Lab Code: COMPU C	Case No.: <u>17744</u> SAS No.	: <u>6579HO</u> SDG 1	No.: CHY02
Matrix: (soil/water)	WATER	Lab Sample ID:	477457
Sample wt/vol:		Lab File ID:	CN077457B51
Level: (low/med)	LOW	Date Received:	01/29/92
% Moisture: not dec.		Date Analyzed:	02/02/92

Soil Extract Volume: ____ (uL)

Number TICs found: __1

GC Column: <u>DB-624</u> ID: <u>0.530</u> (mm)

Soil Aliquot Volume: ____(uL)

Dilution Factor: ____1.0

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 76-13-1	ETHANE, 1,1,2-TRICHLORO-1,2,	4.82	10	JN

14 FT (*)

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: COMPUCHEM.RTP Contract: 68D1	0083	CHY04	
Lab Code: <u>COMPU</u>	HO SDG 1	No.: CHY02	
Matrix: (soil/water) <u>WATER</u> Lab S	ample ID:	477457	
, , , , , , , , , , , , , , , , , , , ,	ile ID:	GH077457B	
Sample wc/vol. <u>roo</u> (g/ml/ <u>ng</u> lab r	TTG ID.	<u>GR077437B</u>	<u> </u>
Level: (low/med) LOW Date	Received:	01/29/92	
<pre>% Moisture: decanted: (Y/N) Date :</pre>	Extracted:	02/01/92	
Concentrated Extract Volume: 1000 (uL) Date	Analyzed:	02/04/92	
Injection Volume: 2.0(uL) Dilut	ion Factor	:1.0	1
'PC Cleanup: (Y/N) N pH:			
CONCENTRA!			
CAS NO. COMPOUND (ug/L or	ug/Kg) <u>UG/</u>]	<u>r</u> 0	
100-05-2 Phone!		10 11	Ì
108-95-2Phenol		10 U 10 U	
95-57-82-Chlorophenol] :	10 U	1
541-73-11 3-Dichlorohengene		10 0	1
541-73-11,3-Dichlorobenzene]	- 1	1
106-46-71,4-Dichlorobenzene	1	10 0	1
95-50-11,2-Dichlorobenzene		10 U	ł
95-48-72-Methylphenol]	10 0	
108-60-12,2'-0xybis(1-Chloropropane)_		10 0	
106-44-54-Methylphenol	P .	10 U	
621-64-7N-Nitroso-Di-n-Propylamine		10 ប្រ	1
67-72-1Hexachloroethane] :	10 U	
98-95-3Nitrobenzene		10 U	Į.
78-59-1Isophorone	;	10 ប្រ	i
88-75-52-Nitrophenol	}	10 ប្រ	1
105-67-92,4-Dimethylphenol] :	10 U	
111-91-1bis(2-Chloroethoxy)Methane	:	10 ប្រ	l
120-83-22,4-Dichlorophenol	ļ :	10 σ	
120-82-11,2,4-Trichlorobenzene		10 U	
91-20-3Naphthalene_	:	10 U	ł
106-47-84-Chloroaniline		10 ซ	
87-68-3Hexachlorobutadiene	\ 	10 บ	1
59-50-74-Chloro-3-Methylphenol		10 U	
91-57-62-Methylnaphthalene	1	10 U	İ
77-47-4Hexachlorocyclopentadiene		เด เซ	
88-06-22,4,6-Trichlorophenol		10 U	
95-95-42,4,5-Trichlorophenol		25 ซ	1
91-58-72-Chloronaphthalene		10 0	
88-74-42-Nitroaniline		25 U	}
131-11-3Dimethyl Phthalate		10 0	1
208-96-8Acenaphthylene	4	10 U	1
606-20-22,6-Dinitrotoluene		10 U	
99-09-23-Nitroaniline		25 U	1
83-32-9Acenaphthene	•		
83-32-9Acenaphthene	•	10 0	
FORM I SV-1	l		.l /90

SAMPLE DATA PACKAGE

Lab Name: COMPUCHEM.RTP Contract:	68D10083	CHY04
Lab Code: COMPU Case No.: 17744 SAS No.:		No.: CHY02
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	477457
Sample wt/vol: 1000 (g/mL) ML	Lab File ID:	GH077457B52
Level: (low/med) LOW	Date Received:	01/29/92
Moisture: decanted: (Y/N)	Date Extracted:	02/01/92
Concentrated Extract Volume: 1000 (uL)	Date Analyzed:	02/04/92
Injection Volume:2.0(uL)	Dilution Factor	1.0
	ENTRATION UNITS	
CAS NO. COMPOUND (ug/	L or ug/Kg) <u>UG/</u>	<u>L</u> Q
51-28-52,4-Dinitrophenol		25 U 25 U
132-64-9Dibenzofuran	 -	10 11

		$\overline{}$
51-28-52,4-Dinitrophenol	25	U
100-02-74-Nitrophenol	25	U
132-64-9Dibenzofuran	10	ט
121-14-22,4-Dinitrotoluene	10	ט
84-66-2Diethylphthalate	10	ט
7005-72-34-Chlorophenyl-phenylether	10	U
B6-73-7Fluorene	10	U
100-01-64-Nitroaniline	25	U
534-52-14,6-Dinitro-2-Methylphenol	25	ט
86-30-6N-Nitrosodiphenylamine (1)	10	U
101-55-34-Bromophenyl-phenylether	10	U
118-74-1Hexachlorobenzene	10	ט
87-86-5Pentachlorophenol	25	U
85-01-8Phenanthrene	10	ប
120-12-7Anthracene	10	U
86-74-8Carbazole	10	υ
84-74-2Di-n-Butylphthalate	10	U
206-44-0Fluoranthene	10	บ
129-00-0Pyrene	10	Ū
85-68-7Butylbenzylphthalate	10	บ
91-94-13,3'-Dichlorobenzidine	10	Ü
56-55-3Benzo(a)Anthracene	10	Ū
218-01-9Chrysene	10	Ü
117-81-7bis(2-Ethylhexyl)Phthalate	10	Ū
117-84-0Di-n-Octyl Phthalate	10	Ū
205-99-2Benzo(b) Fluoranthene	10	Ü
207-08-9Benzo(k)Fluoranthene	10	Ū
50-32-8Benzo(a) Pyrene	10	U
50-32-8Benzo(a) Pyrene	10	บ
53-70-3Dibenz(a,h)Anthracene	10	U
191-24-2Benzo(g,h,i)Perylene	10	ľű

(1) - Cannot be separated from Diphenylamine

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPLE	NO.
PLU		110

Lab Name: COMPUCHE	M.RTP	Contract: 68	D10083	CHY04	
Lab Code: COMPU	Case No.: <u>17744</u>	SAS No.: 65	<u>79НО</u> S	DG No.: CHY02	
Matrix: (soil/water	r) <u>WATER</u>	Lab	Sample I	D: <u>477457</u>	
Sample wt/vol:	1000 (g/mL) ML	Lab	File ID:	GH077457B52	
Level: (low/med)) LOW	Date	e Receive	d: <u>01/29/92</u>	
% Moisture:	decanted: (Y/N) _	Date	e Extract	ed: <u>02/01/92</u>	
Concentrated Extra	ct Volume: 1000 (uL) Date	e Analyze	d: <u>02/04/92</u>	
Injection Volume:	2.0(uL)	Dili	ution Fac	tor:1.0	
PC Cleanup: (Y/I	N) <u>N</u> pH:				
CONCENTRATION UNITS: Number TICs found:0 (ug/L or ug/Kg) <u>UG/L</u>					
CAS NUMBER	COMPOUND NAM	E I	RT E	ST. CONC. Q	-

1D PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CHY04

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02

Matrix: (soil/water) WATER Lab Sample ID: 477457

Sample wt/vol: 1000(g/ml)ML Lab File ID:

% Moisture: decanted: (Y/N) Date Received: 01/29/92

Extraction: (SepF/Cont/Sonc) SEPF Date Extracted: 01/30/92

Concentrated Extract Volume: 10000(uL) Date Analyzed: 02/04/92

Injection Volume: 2.0(uL) Dilution Factor: 1

GPC Cleanup: (Y/N)N pH: Sulfur Cleanup: (Y/N)N

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg)UG/L Q 0.050 IU 319-84-6----alpha-BHC_ 319-85-7----beta-BHC_ 0.050 IU 0.050 10 319-86-8-----delta-BHC_ 0.050 U 58-89-9----gamma-BHC (Lindane)_____ 76-44-8-----Heptachlor_ 0.050 IU 309-00-2----Aldrin <u>0.050 | U</u> 1024-57-3-----Heptachlor epoxide__ 0.050 U 959-98-8-----Endosulfan I____ <u>0.050|U</u> 60-57-1-----Dieldrin_ 0.10 U 72-55-9-----4,4'-DDE_ <u>0.10|U</u> 72-20-8-----Endrin 0.10 U 33213-65-9----Endosulfan II 0.10 | 0 72-54-8-----4,4'-DDD_ 0.10 | U 1031-07-8-----Endosulfan sulfate <u>0.10|U</u> 50-29-3-----4,4'-DDT <u>0.10 | U</u> 72-43-5-----Methoxychlor_ <u>0.50 (U</u> 53494-70-5----Endrin ketone_ 0.10 U 7421-93-4----Endrin aldehyde_ <u>0.10|U</u> 0.0029 J 5103-71-9----alpha-Chlordane_ 5103-74-2----gamma-Chlordane_ 0.050 U 8001-35-2----Toxaphene_ <u>5.0|U</u> 12674-11-2----Aroclor-1016 <u>1.0|U</u> 11104-28-2----Aroclor-1221 2.0 U 11141-16-5----Aroclor-1232_ <u> 1.0|U</u> 53469-21-9----Aroclor-1242 <u> 1.0|U</u> 12672-29-6----Aroclor-1248_ 1.0 | U11097-69-1----Aroclor-1254 1.0 IU 11096-82-5----Aroclor-1260 1.0 | U

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

COMPOUND

EPA SAMPLE NO.

Lab Name: COMPUCHEM.RTP Contract	CHY05
Lab Code: COMPU Case No.: 17744 SAS No.	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: 477458
Sample wt/vol:	Lab File ID: <u>CN077458B51</u>
Level: (low/med) LOW	Date Received: 01/29/92
% Moisture: not dec	Date Analyzed: 02/02/92
GC Column: DB-624 ID: 0.530 (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume:(uL)

CONCENTRATION UNITS:
(ug/L or ug/Kg) <u>UG/L</u> Q

74-87-3-----Chloromethane 10 U U 74-83-9-----Bromomethane 10 U 75-01-4------Vinyl Chloride 10 75-00-3-----Chloroethane 10 U 75-09-2-----Methylene Chloride В 16 67-64-1-----Acetone U 10 75-15-0-----Carbon Disulfide U 10 75-35-4-----1,1-Dichloroethene_ U 10 75-34-3-----1,1-Dichloroethane U 10 540-59-0----1,2-Dichloroethene (total) 10 U 67-66-3-----Chloroform 10 U 107-06-2-----1,2-Dichloroethane_ U 10 78-93-3----2-Butanone 10 U 71-55-6-----1,1,1-Trichloroethane_ 10 U 56-23-5-----Carbon Tetrachloride_ U 10 U 75-27-4-----Bromodichloromethane 10 U 78-87-5-----1,2-Dichloropropane_ 10 U 10061-01-5----cis-1,3-Dichloropropene 10 79-01-6----Trichloroethene U 124-48-1-----Dibromochloromethane U 10 79-00-5-----1,1,2-Trichloroethane_ U 10 U 71-43-2-----Benzene 10 10061-02-6----Trans-1,3-Dichloropropene U 10 U 75-25-2----Bromoform 10 108-10-1----4-Methyl-2-Pentanone U 10 U 591-78-6-----2-Hexanone 10 U 127-18-4-----Tetrachloroethene 10 79-34-5----1,1,2,2-Tetrachloroethane 10 U Ų 108-88-3----Toluene 10 108-90-7-----Chlorobenzene 10 U U 100-41-4----Ethylbenzene 10 U 100-42-5----Styrene 10 1330-20-7-----Xylene (total)_ U 10

CAS NO.

1E VOLATILE ORGANICS ANALYSIS DATA SHEET

EFM SAMPLE NO	EPA	SAMPLE	NO
---------------	-----	--------	----

TENTATIVELY IDENTIFIED COMPOUND	
Lab Name: COMPUCHEM.RTP Contrac	CHY05
Lab Code: COMPU Case No.: 17744 SAS No	o.: 6579HO SDG No.: CHY02
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: 477458
Sample wt/vol:	Lab File ID: <u>CN077458B51</u>
Level: (low/med) <u>LOW</u>	Date Received: 01/29/92
% Moisture: not dec	Date Analyzed: 02/02/92
GC Column: DB-624 ID: 0.530 (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume:(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q

Number TICs found: __0

Childipar

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: COMPUCHEM.RTP	CHY05
Lab Code: COMPU Case No.: 17744	SAS No.: 6579HO SDG No.: CHY02
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: 477458
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: GH077458B52
Level: (low/med) LOW	Date Received: 01/29/92
<pre>% Moisture: decanted: (Y/N)</pre>	Date Extracted: 02/01/92
Concentrated Extract Volume: 1000 (1	nL) Date Analyzed: 02/04/92
Injection Volume:2.0(uL)	Dilution Factor: 1.0
GAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q
108-95-2Phenol 111-44-4bis(2-Chloroethy 95-57-82-Chlorophenol 541-73-11.3-Dichlorobenz	10 U

		
108-95-2Phenol	10	U
111-44-4bis(2-Chloroethyl)Ether	10	ប
95-57-82-Chlorophenol	10	U
541-73-11,3-Dichlorobenzene	10	បី
106-46-71,4-Dichlorobenzene	10	U
OF FO-1	10	1 -
95-50-11,2-Dichlorobenzene	1	Ü
95-48-72-Methylphenol 108-60-12,2'-Oxybis(1-Chloropropane)	10	U
		ប
106-44-54-Methylphenol	10	U
106-44-54-Methylphenol 621-64-7N-Nitroso-Di-n-Propylamine	10	U
67-72-1Hexachloroethane	10	Ü
98-95-3Nitrobenzene	10	ט
78-59-1Isophorone	10	U
88-75-52-Nitrophenol	10	U
105-67-92,4-Dimethylphenol	10	ט
111-91-1bis(2-Chloroethoxy)Methane	10	U
120-83-22,4-Dichlorophenol	10	ד
120-82-11,2,4-Trichlorobenzene	10	U
91-20-3Naphthalene	10	U
106-47-84-Chloroaniline	10	U
87-68-3Hexachlorobutadiene	10	ប
59-50-74-Chloro-3-Methylphenol	10	ប
91-57-62-Methylnaphthalene	10	บ
77-47-4Hexachlorocyclopentadiene	10	ן ט
88-06-22.4.6-Trichlorophenol	10	U
95-95-42,4,5-Trichlorophenol	25	ับ
91-58-72-Chloronaphthalene	10	ប
88-74-42-Nitroaniline	25	Ü
131-11-3Dimethyl Phthalate	10	บ
208-96-8Acenaphthylene	10	บ
606-20-22,6-Dinitrotoluene	10	บ
99-09-23-Nitroaniline	25	U
83-32-9Acenaphthene	10	บ
nochapitetiene		١
	l	1

FORM I SV-1

CHY05 Lab Name: COMPUCHEM.RTP Contract: 68D10083 Case No.: 17744 SAS No.: 6579HO Lab Code: COMPU SDG No.: CHY02 Lab Sample ID: Matrix: (soil/water) WATER_ 477458 1000 (g/mL) ML Lab File ID: Sample wt/vol: GH077458B52 Level: (low/med) LOW Date Received: 01/29/92 % Moisture: decanted: (Y/N) ____ Date Extracted: 02/01/92 Concentrated Extract Volume: 1000 (uL) Date Analyzed: 02/04/92 Dilution Factor: _____1.0 Injection Volume: _____2.0(uL) (Y/N) <u>N</u> GPC Cleanup: pH: ____ CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q 51-28-5----2,4-Dinitrophenol 25 100-02-7----4-Nitrophenol 25 U 132-64-9-----Dibenzofuran 10 Ū 121-14-2----2,4-Dinitrotoluene 10 Ŭ 84-66-2-----Diethylphthalate U 10 7005-72-3----4-Chlorophenyl-phenylether U 10 86-73-7-----Fluorene 10 U 100-01-6----4-Nitroaniline 25 U 534-52-1----4,6-Dinitro-2-Methylphenol 25 U 86-30-6----N-Nitrosodiphenylamine (1) 10 U 101-55-3----4-Bromophenyl-phenylether 10 U 118-74-1-----Hexachlorobenzene 10 U 87-86-5-----Pentachlorophenol___ 25 U 85-01-8-----Phenanthrene 10 U 120-12-7-----Anthracene 10 U 86-74-8-----Carbazole 10 U 84-74-2-----Di-n-Butylphthalate 10 U 206-44-0----Fluoranthene U 10 129-00-0-----Pyrene U 10 85-68-7-----Butylbenzylphthalate 10 U 91-94-1----3,3'-Dichlorobenzidine U 10 56-55-3----Benzo(a)Anthracene 10 U 218-01-9-----Chrysene 10 U 117-81-7----bis(2-Ethylhexyl)Phthalate___ U 10 117-84-0----Di-n-Octyl Phthalate U 10 205-99-2----Benzo(b) Fluoranthene U 10 207-08-9----Benzo(k)Fluoranthene 10 U 50-32-8-----Benzo(a) Pyrene U 10 193-39-5----Indeno(1,2,3-cd)Pyrene__ 10 U 53-70-3----Dibenz(a,h)Anthracene U 10 191-24-2----Benzo(g,h,i)Perylene__ U 10

(1) - Cannot be separated from Diphenylamine

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPLE	NO.
-----	--------	-----

Lab Name: COMPUCHEM.	RTP Contract	: 68D10083	CHY05
Lab Code: COMPU	Case No.: <u>17744</u> SAS No.	: 6579HO SDG	No.: CHY02
Matrix: (soil/water)	WATER	Lab Sample ID:	477458
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	GH077458B52
Level: (low/med)	LOW	Date Received:	01/29/92
% Moisture:	decanted: (Y/N)	Date Extracted:	02/01/92
Concentrated Extract	Volume: <u>1000</u> (uL)	Date Analyzed:	02/04/92
Injection Volume:	2,0(uL)	Dilution Factor	:1.0
GPC Cleanup: (Y/N)	<u>N</u> pH:		

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN	9.65	3	J

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

Number TICs found: 1

ID NAME SHEET CHYOS PRESTICIDE ORGANICS ANALYSIS DATA SHEET CONTROCT GROUNDS CONTROCT GROUNDS CONTROCT GROUNDS CONTROCT GROUNDS CONTROCT GROUNDS CONTROCT GROUNDS CONTROCT GROUNDS CONTROCT GROUNDS CONTROCT GROUNDS CAS NO. 1 5219H0 SOR NO. 1 21145B. Lab Sample ID: 41145B. Lab File ID:	
ID NAME CONFICIDE ORGANICS ANALYSIS DATA SHEET CONTRACTISCIPLO ORGANICS ANALYSIS DATA SHEET CONTRACTISCIPLO ORGANICS ANALYSIS DATA SHEET CONTRACTISCIPLO ORGANICS ANALYSIS DATA SHEET CONTRACTISCIPLO ORGANICS ANALYSIS DATA SHEET CONTRACTISCIPLO ORGANICS ANALYSIS DATA SHEET Lab Sample TD: Lab Sample TD: Lab Sample TD: Lab Sample TD: Lab File ID: Date Received: Q1/19/12 Date Received: Q1/19/12 Date Received: Q1/19/12 Date Received: Q1/19/12 Date Analyzed: Q1/19/12 Date Analyzed: Q1/19/12 Date Analyzed: Q1/19/12 Date Cleanup: (Y/N) B CONCENTRATION UNITS: CONCENTRATION UNITS: CONCENTRATION UNITS: CONCENTRATION UNITS: 19-94-6	$\frac{1}{2}$
ID NAME CONFICIDE ORGANICS ANALYSIS DATA SHEET CONTRACTISCIPLO ORGANICS ANALYSIS DATA SHEET CONTRACTISCIPLO ORGANICS ANALYSIS DATA SHEET CONTRACTISCIPLO ORGANICS ANALYSIS DATA SHEET CONTRACTISCIPLO ORGANICS ANALYSIS DATA SHEET CONTRACTISCIPLO ORGANICS ANALYSIS DATA SHEET Lab Sample TD: Lab Sample TD: Lab Sample TD: Lab Sample TD: Lab File ID: Date Received: Q1/19/12 Date Received: Q1/19/12 Date Received: Q1/19/12 Date Received: Q1/19/12 Date Analyzed: Q1/19/12 Date Analyzed: Q1/19/12 Date Analyzed: Q1/19/12 Date Cleanup: (Y/N) B CONCENTRATION UNITS: CONCENTRATION UNITS: CONCENTRATION UNITS: CONCENTRATION UNITS: 19-94-6	~ NO·
ID NAME CONFICIDE ORGANICS ANALYSIS DATA SHEET CONTRACTISCIPLO ORGANICS ANALYSIS DATA SHEET CONTRACTISCIPLO ORGANICS ANALYSIS DATA SHEET CONTRACTISCIPLO ORGANICS ANALYSIS DATA SHEET CONTRACTISCIPLO ORGANICS ANALYSIS DATA SHEET CONTRACTISCIPLO ORGANICS ANALYSIS DATA SHEET Lab Sample TD: Lab Sample TD: Lab Sample TD: Lab Sample TD: Lab File ID: Date Received: Q1/19/12 Date Received: Q1/19/12 Date Received: Q1/19/12 Date Received: Q1/19/12 Date Analyzed: Q1/19/12 Date Analyzed: Q1/19/12 Date Analyzed: Q1/19/12 Date Cleanup: (Y/N) B CONCENTRATION UNITS: CONCENTRATION UNITS: CONCENTRATION UNITS: CONCENTRATION UNITS: 19-94-6	SAMPLE
ID NAME CONFICIDE ORGANICS ANALYSIS DATA SHEET CONTRACTISCIPLO ORGANICS ANALYSIS DATA SHEET CONTRACTISCIPLO ORGANICS ANALYSIS DATA SHEET CONTRACTISCIPLO ORGANICS ANALYSIS DATA SHEET CONTRACTISCIPLO ORGANICS ANALYSIS DATA SHEET CONTRACTISCIPLO ORGANICS ANALYSIS DATA SHEET Lab Sample TD: Lab Sample TD: Lab Sample TD: Lab Sample TD: Lab File ID: Date Received: Q1/19/12 Date Received: Q1/19/12 Date Received: Q1/19/12 Date Received: Q1/19/12 Date Analyzed: Q1/19/12 Date Analyzed: Q1/19/12 Date Analyzed: Q1/19/12 Date Cleanup: (Y/N) B CONCENTRATION UNITS: CONCENTRATION UNITS: CONCENTRATION UNITS: CONCENTRATION UNITS: 19-94-6	EPA
ID ID ID ID ID IN CONTRACT: 6901003 CONTRACT: 6901003 CONTRACT: 6901003 CONTRACT: 6901003 ILAB SAMPLE ID: Lab Sample ID: Lab File ID	
Lab Name: COMPULIENTER Lab Code: COMFU Lab Code: COMFU Lab Code: COMFU Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Date Received: 01 1993 Date Extracted: 01 1993 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Extractor: (Y/N) K Concentrated Extract Volume: 10000(uL) Concentrated Volume: 2 0(uL) Concentrated Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentration Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.	CHY
Lab Name: COMPULIENTER Lab Code: COMFU Lab Code: COMFU Lab Code: COMFU Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Date Received: 01 1993 Date Extracted: 01 1993 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Extractor: (Y/N) K Concentrated Extract Volume: 10000(uL) Concentrated Volume: 2 0(uL) Concentrated Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentration Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.	CHEET
Lab Name: COMPULIENTER Lab Code: COMFU Lab Code: COMFU Lab Code: COMFU Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Date Received: 01 1993 Date Extracted: 01 1993 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Extractor: (Y/N) K Concentrated Extract Volume: 10000(uL) Concentrated Volume: 2 0(uL) Concentrated Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentration Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.	DATA SIL
Lab Name: COMPULIENTER Lab Code: COMFU Lab Code: COMFU Lab Code: COMFU Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Date Received: 01 1993 Date Extracted: 01 1993 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Extractor: (Y/N) K Concentrated Extract Volume: 10000(uL) Concentrated Volume: 2 0(uL) Concentrated Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentration Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.	1D VALYSIS CHIVE
Lab Name: COMPULIENTER Lab Code: COMFU Lab Code: COMFU Lab Code: COMFU Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Date Received: 01 1993 Date Extracted: 01 1993 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Extractor: (Y/N) K Concentrated Extract Volume: 10000(uL) Concentrated Volume: 2 0(uL) Concentrated Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentration Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.	NICS ANA SOCIETY SOCIE
Lab Name: COMPULIENTER Lab Code: COMFU Lab Code: COMFU Lab Code: COMFU Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Date Received: 01 1993 Date Extracted: 01 1993 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Extractor: (Y/N) K Concentrated Extract Volume: 10000(uL) Concentrated Volume: 2 0(uL) Concentrated Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentration Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.	CONELL CONTRACTOR TO: 41
Lab Name: COMPULIENTER Lab Code: COMFU Lab Code: COMFU Lab Code: COMFU Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Date Received: 01 1993 Date Extracted: 01 1993 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Extractor: (Y/N) K Concentrated Extract Volume: 10000(uL) Concentrated Volume: 2 0(uL) Concentrated Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentration Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.	NO: Dample
Lab Name: COMPULIENTER Lab Code: COMFU Lab Code: COMFU Lab Code: COMFU Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Lab Code: Comfu Date Received: 01 1993 Date Extracted: 01 1993 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Analyzed: 02 04/3 Date Extractor: (Y/N) K Concentrated Extract Volume: 10000(uL) Concentrated Volume: 2 0(uL) Concentrated Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 2 0(uL) Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentration Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentration Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.050 Concentrated Extract Volume: 0 0.	Lab Lab 129192
Lab Code: (soil water) MADE Matrix: (soil	
Lab Code: (soil water) MADE Matrix: (soil	COMPUCIAL CASE NO.
Lab Code: (soil water) MADE Matrix: (soil	Name: Date No nacted: Use na 192
Matrix: decanted: (Y/N) SEPF Date And Factor: (Y/N) Moisture: (Sepf / Cont / Sonc) Extraction: (Sepf / Cont	Lab come come rer) WATER INLIMIA
Matrix: decanted: (Y/N) SEPF Date And Factor: (Y/N) Moisture: (Sepf / Cont / Sonc) Extraction: (Sepf / Cont	Tab Code sail water 1000(g) many
Sample WT decem/sonc) Moisture: Extraction: Concentrated Extract Volume: Injection Volume: CAS NO. CAS NO	rix: (SOL LYN)
Sample Moisture: (Sepf Cont Sonc Extraction: Concentrated Extract Sulfur Injection Sulfur Injection Concentrated Sulfur Injection	Mattin vol:
Restraction: (SepF Continue: 1002) Extraction: (SepF Continue: 1002) Concentrated Extract Volume: 2.0(uL) Injection Volume: 2.0(uL) Concentrated Extract (Y/N)N Concentrated Extract (Y/N)N Concentrated Extract (V)NN Conc	cample wo, dec (Sonc) angul) Dilutz gleanup:
Concentrated Extract Concentrated Extract Injection Volume: 2_0(uL) Injection Volume: 2_0(uL) COMPOUND COMPOUND CAS NO	Sant sture: 10000's 10000's
Concentrated Extract PH: Injection Volume: 2_L((uL)) Injection Volume: (Y/N)N COMPOUND (ug/L or ug/Kg)UG/L GPC Cleanup: (Y/N)N COMPOUND (ug/L or ug/Kg)UG/L CAS NO COMPOUND (ug/L or ug/Kg)UG/L 319-84-6	& Worse (Seb., Aolines, Sar.
CAS NO. CAS NO. COMPOUND O.05	
CAS NO. CAS NO. COMPOUND O.05	Extra rated Ex 2.0(uli)
CAS NO. CAS NO. COMPOUND O.05	concentration une: 2 Pr. Concentration use 19,050
CAS NO. CAS	(ug/2) 0.038
CAS NO. alpha_BHC beta_BHC Jay = 84 - 6 delta_BHC Jay = 85 - 8 delta_BHC Jay = 85 - 8	Injecta and: (Y).
CAS NO. 319-84-6	Compound
309-00-1-3 1024-57-3 1024-57-1 1024-57-1 259-98-8	GPC (C)
309-00-1-3 1024-57-3 1024-57-1 1024-57-1 259-98-8	NO. ha-BHC
309-00-1-3 1024-57-3 1024-57-1 1024-57-1 259-98-8	CASalpin-BHCndane)
309-00-1-3 1024-57-3 1024-57-1 1024-57-1 259-98-8	- delta-Bruc (Lilin
309-00-1-3 1024-57-3 1024-57-1 1024-57-1 259-98-8	1 319-84-7
309-00-1-3 1024-57-3 1024-57-1 1024-57-1 259-98-8	319-86-8
309-00-1-3 1024-57-3 1024-57-1 1024-57-1 259-98-8	319-89-9Aldrachlor I
309-00-1-3 1024-57-3 1024-57-1 1024-57-1 259-98-8	\\ 58.44-8.2
60-57-9	
60-57-9	1024 98 - 8 4 4 4 - 18 - 11
12-55-8-9	95957-1Endreulfan Itate
72-20-65-9	\ 00 55-3
1031-9-3Endrin alderdane 50-23-5Endrin chlordane 12-43-50-5Endrin chlordane	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
1031-9-3Endrin alderdane 50-23-5Endrin chlordane 12-43-50-5Endrin chlordane	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
12-43-10-5alpha-chlord	· 12-31-01-8 Methou ketdehyde
12-43-10-5alpha-chlord	10329-3Endrin allordane
\ 13494-12-4	\ 32-43-70-5-1 mha chloru
7421-71-9	\ 13494-12-4
5103-74-2	\ 7421-71-9Toxaplor-10121
12674-18-2Aroclor-1248 12674-28-2Aroclor-1248 12674-28-2	\ 5103-74-2Aroclor-1232
12674-28-2Aroclor-1248	5101-351-2Aroclor-1242
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Charles In

							CHY06
Lab	Name:	COMPUCHEM	RTP	Contract:	68D10083	_	· —————————
T.ah	Code:	COMPIT	Case No.: 17744	SAS No.:	6579HO	SDG	No.: CHV02

Matrix: (soil/water) WATER Lab Sample ID: 477459

Sample wt/vol: ____5.0 (g/mL) ML Lab File ID: CN077459B51

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: not dec. ____ Date Analyzed: 02/02/92

GC Column: DB-624 ID: 0.530 (mm) Dilution Factor: 1.0

Soil Extract Volume: _____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or	ug/Kg)	UG/L	Q

]	1
74-87-3Chloromethane	10	U
74-83-9Bromomethane	_ 10	U
75-01-4Vinyl Chloride	_ ₁₀	ប
75-00-3Chloroethane	10	ប
75-09-2Methylene Chloride	₃₂	В
67-64-1Acetone	10	Ū
75-15-0Carbon Disulfide	10	U
75-35-41,1-Dichloroethene		Ū
75-34-31,1-Dichloroethane		U
540-59-01,2-Dichloroethene (total)_	10	U
67-66-3Chloroform	10	U
107-06-21,2-Dichloroethane	_	Ū
78-93-32-Butanone	_	Ū
71-55-61,1,1-Trichloroethane	_ 10	U
56-23-5Carbon Tetrachloride	10	Ū
75-27-4Bromodichloromethane	10	U
78-87-51,2-Dichloropropane	_	ប
10061-01-5cis-1,3-Dichloropropene	- 10	Ū
79-01-6Trichloroethene	10	Ū
124-48-1Dibromochloromethane	10	U
79-00-51,1,2-Trichloroethane		ប
71-43-2Benzene	i 10	Ū
10061-02-6Trans-1,3-Dichloropropene	10	U
75-25-2Bromoform	_ 10	U
108-10-14-Methyl-2-Pentanone	_ 10	U
591-78-62-Hexanone	10	טן
127-18-4Tetrachloroethene	_ 10	U
79-34-51,1,2,2-Tetrachloroethane	_ 10	U
108-88-3Toluene	10	U
108-90-7Chlorobenzene	_ 10	U
100-41-4Ethylbenzene	10	U
100-42-5Styrene	_ 10	U
	·	1

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COMPUCHEM.RTP Cont	cract: 68D10083 CHY06
Lab Code: COMPU Case No.: 17744 SAS	S No.: 6579HO SDG No.: CHY02
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: 477459
Sample wt/vol:	Lab File ID: <u>CN077459B51</u>
Level: (low/med) <u>LOW</u>	Date Received: 01/29/92
% Moisture: not dec	Date Analyzed: 02/02/92
GC Column: DB-624 ID: 0.530 (mm)	Dilution Factor:1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume:(uL)
CC	NCENDRATON UNITE.

					
		•			ı
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q	
	=======================================	=======		=====	
1.	LABORATORY ARTIFACT	21.30	13	J	ĺ

(ug/L or ug/Kg) UG/L

Number TICs found: __1

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

COMPOUND

EPA SAMPLE NO.

Lab Name: COMPUCHEM, RTP	Contract	: 68D10083	CHY06
Lab Code: COMPU Case No	.: <u>17744</u> SAS No.	: <u>6579HO</u> SDG	No.: <u>CHY02</u>
Matrix: (soil/water) WATER		Lab Sample ID:	477459
Sample wt/vol: 1000	(g/mL) ML	Lab File ID:	GH077459B52
Level: (low/med) LOW_		Date Received:	01/29/92
% Moisture: decant	ed: (Y/N)	Date Extracted:	02/01/92
Concentrated Extract Volume	: <u>1000</u> (uL)	Date Analyzed:	02/04/92
Injection Volume: 2.0(uL)	Dilution Factor	:1.0
GPC Cleanup: (Y/N) N		CENTRATION UNITS	:

(ug/L or ug/Kg) UG/L

		1
108-95-2Phenol	10	ט
111-44-4bis(2-Chloroethyl)Ether	10	U
95-57-82-Chlorophenol 541-73-11,3-Dichlorobenzene	10	U
541-73-11,3-Dichlorobenzene	10	U
106-46-71,4-Dichlorobenzene	10	บ
95-50-11,2-Dichlorobenzene	10	U
	10	ט
95-48-72-Methylphenol	10	U
106-44-54-Methylphenol	10	U
621-64-7N-Nitroso-Di-n-Propylamine	10	U
67-72-1Hexachloroethane	10	U
98-95-3Nitrobenzene	10	U
78-59-1Isophorone	10	บ
88-75-52-Nitrophenol	10	บ
105-67-92,4-Dimethylphenol	10	U
111-91-1bis(2-Chloroethoxy)Methane	10	U
120-83-22,4-Dichlorophenol	10	ប
120-82-11,2,4-Trichlorobenzene	10	U
91-20-3Naphthalene	10	U
106-47-84-Chloroaniline	10	U
87-68-3Hexachlorobutadiene	10	U
59-50-74-Chloro-3-Methylphenol	10	U
91-57-62-Methylnaphthalene	10	ប
77-47-4Hexachlorocyclopentadiene	10	ับ
88-06-22,4,6-Trichlorophenol	10	บ
95-95-42,4,5-Trichlorophenol	25	U
91-58-72-Chloronaphthalene	10	U
88-74-42-Nitroaniline	25	บ
131-11-3Dimethyl Phthalate	10	ט
208-96-8Acenaphthylene	10	U
606-20-22,6-Dinitrotoluene	10	υ
99-09-23-Nitroaniline	25	U
83-32-9Acenaphthene	10	บ
	, 	

CAS NO.

Lab	Name:	COMPUCHEM.RTP	Contract:	68D10083	_
-----	-------	---------------	-----------	----------	---

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02

Matrix: (soil/water) WATER Lab Sample ID: 477459

Sample wt/vol: 1000 (g/mL) ML Lab File ID: GH077459B52

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: ____ decanted: (Y/N) ___ Date Extracted: 02/01/92

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 02/04/92

Injection Volume: 2.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) N pH: ___

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L Q

		
51-28-52,4-Dinitrophenol	25	ש
100-02-74-Nitrophenol	25	ט
132-64-9Dibenzofuran	10	U
121-14-22,4-Dinitrotoluene	10	ט
	10	ט
7005-72-34-Chlorophenyl-phenylether	10	ַ ט
86-73-7Fluorene] 10	ַ ט
100-01-64-Nitroaniline	25	ט
534-52-14,6-Dinitro-2-Methylphenol	25	Ū
86-30-6N+Nitrosodiphenylamine (1)	10	ט
101-55-34-Bromophenyl-phenylether	1 10	ט
118-74-1Hexachlorobenzene	10	ប
87-86-5Pentachlorophenol	\ 25	U
85-01-8Phenanthrene	10	ַט
120-12-7Anthracene	10	ប
86-74-8Carbazole	i 10	υ
84-74-2Di-n-Butylphthalate	10	ט
206-44-0Fluoranthene	10	ט
129-00-0Pyrene	10	שׁ
85-68-7Butylbenzylphthalate	10	שׁ
91-94-13,3'-Dichlorobenzidine	10	U
56-55-3Benzo(a)Anthracene	[] 10	ַ ט
218-01-9Chrysene	10	Ū
117-81-7bis(2-Ethylhexyl)Phthalate	2	J
117-84-0Di-n-Octyl Phthalate	10	ט
205-99-2Benzo(b) Fluoranthene	10	ט
207-08-9Benzo(k) Fluoranthene	10	ט
50-32-8Benzo(a) Pyrene	10	U
193-39-5Indeno(1,2,3-cd)Pyrene	10	U
53-70-3Dibenz(a,h)Anthracene	10	ט
191-24-2Benzo(g,h,i)Perylene	10	U
والتراجي والتراجي والمراج والمراج والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع		

(1) - Cannot be separated from Diphenylamine

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

UNKNOWN

1.

EPA SAMPLE NO.

J

Lab Name: COMPUCHEM.RTP	Contract: 68D10083					
Lab Code: COMPU Case No.: 17744	SAS No.: 6579HO SDG No.: CHY02					
Matrix: (soil/water) WATER	Lab Sample ID: 477459					
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: <u>GH077459B52</u>					
Level: (low/med) LOW	Date Received: 01/29/92					
% Moisture: decanted: (Y/N)	% Moisture: decanted: (Y/N) Date Extracted: 02/01/92					
Concentrated Extract Volume: 1000	Concentrated Extract Volume: 1000 (uL) Date Analyzed: 02/04/92					
Injection Volume: 2.0(uL) Dilution Factor: 1.0						
3PC Cleanup: (Y/N) N pH:						
Number TICs found: 1 (ug/L or ug/Kg) UG/L						
CAS NUMBER COMPOUND NA	ME RT EST. CONC. Q					

4.77

PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CHY06

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02

Matrix: (soil/water)WATER Lab Sample ID: 477459

Sample wt/vol: 1000(g/ml)ML Lab File ID:

% Moisture: decanted: (Y/N) Date Received: 01/29/92

Extraction: (SepF/Cont/Sonc) SEPF Date Extracted: 01/30/92

Concentrated Extract Volume: 10000(uL) Date Analyzed: 02/04/92

Injection Volume: 2.0(uL) Dilution Factor: 1

GPC Cleanup: (Y/N)N pH: Sulfur Cleanup: (Y/N)N

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg)UG/L Q 319-84-6-----alpha-BHC_ 0.05010 0.050 U 319-85-7-----beta-BHC 319-86-8-----delta-BHC_ <u>0.050|U</u> 58-89-9----gamma-BHC (Lindane)__ <u>0.050|U</u> 76-44-8-----Heptachlor____ 0.050 U 309-00-2----Aldrin 0.050 U 1024-57-3-----Heptachlor epoxide_____ 0.050 U 959-98-8-----Endosulfan I_ 0.050 U 0.10 U 60-57-1------Dieldrin_ 0.10|U 72-55-9-----4,4'-DDE_ 72-20-8-----Endrin_ 0.1010 33213-65-9----Endosulfan II_ 0.10 U 72-54-8-----4,4'-DDD_ 0.00711JP 0.1010 1031-07-8----Endosulfan sulfate 0.10 U 50-29-3-----4,4'-DDT 72-43-5----Methoxychlor_ O. 50 | U 53494-70-5----Endrin ketone_ <u>0.10|U</u> 7421-93-4----Endrin aldehyde_ 0.10 U 5103-71-9----alpha-Chlordane_ <u>0.050|U</u> 5103-74-2----gamma-Chlordane <u>0.050|U</u> 8001-35-2----Toxaphene <u>5.0|U</u> 12674-11-2----Aroclor-1016 1.0 U 11104-28-2----Aroclor-1221 <u>2.0|U</u> 11141-16-5----Aroclor-1232 <u> 1.0|U</u> 53469-21-9----Aroclor-1242 <u> 1.0|U</u> 12672-29-6-----Aroclor-1248_ <u> 1.010</u> 11097-69-1----Aroclor-1254_ 1.010 1.014 11096-82-5----Aroclor-1260

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: COMPUCHEM.RTP Co	ontract: 68D10083 CHY07
Lab Code: COMPU Case No.: 17744 S	AS No.: 6579HO SDG No.: CHY02
Matrix: (soil/water) WATER	Lab Sample ID: 477460
Sample wt/vol:5.0 (g/mL) ML	Lab File ID: <u>CN077460B51</u>
Level: (low/med) LOW	Date Received: 01/29/92
% Moisture: not dec	Date Analyzed: 02/02/92
GC Column: <u>DB-624</u> ID: <u>0.530</u> (mm)	Dilution Factor:1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume:(uL)

CONCENTRATION UNITS:
CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

74-87-3Chloromethane	10	ש
74-83-9Bromomethane	10	ע
75-01-4Vinyl Chloride	10	ַט
75-00-3Chloroethane	10	ט
75-09-2Methylene Chloride	54	В
67-64-1Acetone	10	ש
75-15-0Carbon Disulfide	10	שׁ
75-35-41,1-Dichloroethene	10	ן ט
75-34-31,1-Dichloroethane	10	ប
540-59-01,2-Dichloroethene (total)	10	Ū
67-66-3Chloroform	10	Ū
107-06-21,2-Dichloroethane	10	Ū
78-93-32-Butanone	10	Ü
71-55-61,1,1-Trichloroethane		ט
56-23-5Carbon Tetrachloride	10	Ū
75-27-4Bromodichloromethane	10	Ū
78-87-51,2-Dichloropropane	10	ן ט
10061-01-5cis-1,3-Dichloropropene	10	บ
79-01-6Trichloroethene	10	ĺΰ
124-48-1Dibromochloromethane	10	lυ
79-00-51,1,2-Trichloroethane	10	ប
71-43-2Benzene	10	Jυ
10061-02-6Trans-1,3-Dichloropropene	10	lυ
75-25-2Bromoform	10	U
108-10-14-Methyl-2-Pentanone	10	Ū
591-78-62-Hexanone	10	Ü
127-18-4Tetrachloroethene	10	Ιŭ
79-34-51,1,2,2-Tetrachloroethane	10	Ū
108-88-3Toluene	10	Ū
108-90-7Chlorobenzene	10	Ū
100-41-4Ethylbenzene	10	Ϊ́υ
L00-42-5Styrene	10	Ū
1330-20-7Xylene (total)	10	Ū

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPLE	NO.
-----	--------	-----

Lab Name: COMPUCHEM.RTP	CHY07 Contract: 68D10083	
Lab Code: <u>COMPU</u> Case No.: <u>17744</u>	SAS No.: 6579HO SDG No.: CHY02	
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: 477460	_
Sample wt/vol:5.0 (g/mL) ML_	Lab File ID: <u>CN077460B51</u>	
Level: (low/med) LOW	Date Received: 01/29/92	
Moisture: not dec	Date Analyzed: 02/02/92	
GC Column: DB-624 ID: 0.530 (mm)	Dilution Factor:1.0	
Sail Futract Valume: (NI)	Sail Alimot Valume: (uT	

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

	<u> </u>		· · · · · · · · · · · · · · · · · · ·	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		#=2=== x		

Number TICs found: __0

					CHY07
Lab	Name:	COMPUCHEM, RTP	Contract:	68D10083	

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02

Matrix: (soil/water) WATER Lab Sample ID: 477460

Sample wt/vol: 1000 (g/mL) ML Lab File ID: GH077460B52

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: ____ decanted: (Y/N) ___ Date Extracted: 02/01/92

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 02/03/92

Injection Volume: _____2.0(uL) Dilution Factor: ____1.0

GPC Cleanup: (Y/N) N pH: ___

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

105-67-92,4-Dimethylphenol 10 U 111-91-1bis(2-Chloroethoxy)Methane 10 U 120-83-22,4-Dichlorophenol 10 U 120-82-11,2,4-Trichlorobenzene 10 U 91-20-3Naphthalene 10 U 106-47-8		<u> </u>	
95-57-82-Chlorophenol 10 U 541-73-11, 3-Dichlorobenzene 10 U 95-50-11, 4-Dichlorobenzene 10 U 95-50-11, 2-Dichlorobenzene 10 U 95-48-72-Methylphenol 10 U 108-60-12, 2'-Oxybis(1-Chloropropane) 10 U 106-44-54-Methylphenol 10 U 621-64-7N-Nitroso-Di-n-Propylamine 10 U 67-72-1Hexachloroethane 10 U 98-95-3Nitrobenzene 10 U 88-75-5Isophorone 10 U 88-75-5Isophorone 10 U 88-75-52, 4-Dimethylphenol 10 U 105-67-92, 4-Dimethylphenol 10 U 111-91-1bis(2-Chloroethoxy) Methane 10 U 120-82-11, 2, 4-Trichlorobenzene 10 U 91-20-3Naphthalene 10 U 106-47-8	108-95-2Phenol	10	ับ
95-57-82-Chlorophenol 10 U 541-73-11, 3-Dichlorobenzene 10 U 95-50-11, 4-Dichlorobenzene 10 U 95-50-11, 2-Dichlorobenzene 10 U 95-48-72-Methylphenol 10 U 108-60-12, 2'-Oxybis(1-Chloropropane) 10 U 106-44-54-Methylphenol 10 U 621-64-7N-Nitroso-Di-n-Propylamine 10 U 67-72-1Hexachloroethane 10 U 98-95-3Nitrobenzene 10 U 88-75-5Isophorone 10 U 88-75-5Isophorone 10 U 88-75-52, 4-Dimethylphenol 10 U 105-67-92, 4-Dimethylphenol 10 U 111-91-1bis(2-Chloroethoxy) Methane 10 U 120-82-11, 2, 4-Trichlorobenzene 10 U 91-20-3Naphthalene 10 U 106-47-8	111-44-4bis(2-Chloroethyl)Ether	10	ט
541-73-11, 3-Dichlorobenzene 10 U 106-46-71, 4-Dichlorobenzene 10 U 95-50-11, 2-Dichlorobenzene 10 U 95-48-72-Methylphenol 10 U 108-60-12, 2'-Oxybis (1-Chloropropane) 10 U 106-44-54-Methylphenol 10 U 621-64-7N-Nitroso-Di-n-Propylamine 10 U 67-72-1Hexachloroethane 10 U 88-95-3	95-57-82-Chlorophenol	10	บ
106-46-7	541-73-11,3-Dichlorobenzene	10	U
95-50-1	106-46-71.4-Dichlorobenzene	10	บ
95-48-72-Methylphenol 10 U 108-60-12,2'-Oxybis(1-Chloropropane) 10 U 106-44-54-Methylphenol 10 U 67-72-1Hexachloroethane 10 U 98-95-3Nitrobenzene 10 U 88-75-52-Nitrophenol 10 U 105-67-92,4-Dimethylphenol 10 U 111-91-1bis(2-Chloroethoxy)Methane 10 U 120-83-22,4-Dichlorophenol 10 U 120-82-11,2,4-Trichlorobenzene 10 U 91-20-3Naphthalene 10 U 91-57-64-Chloroaniline 10 U 91-57-62-Methylnaphthalene 10 U 91-57-62,4,5-Trichlorophenol 10 U 91-58-72,4,5-Trichlorophenol 25 U 91-58-72,4,5-Trichlorophenol 25 U 91-58-72-Chloronaphthalene 10 U 98-96-82,4,5-Trichlorophenol 25 U 91-58-72-Chloronaphthalene 10 U 98-96-8	95-50-11,2-Dichlorobenzene	10	Ū
108-60-12,2'-Oxybis(1-Chloropropane) 10644-54-Methylphenol 1072-1		10	ับ
106-44-54-Methylphenol 10 U 621-64-7N-Nitroso-Di-n-Propylamine 10 U 67-72-1Hexachloroethane 10 U 98-95-3Nitrobenzene 10 U 78-59-1Isophorone 10 U 88-75-52-Nitrophenol 10 U 105-67-92,4-Dimethylphenol 10 U 111-91-1bis(2-Chloroethoxy)Methane 10 U 120-83-22,4-Dichlorophenol 10 U 120-83-22,4-Trichlorophenol 10 U 91-20-3Naphthalene 10 U 106-47-8Naphthalene 10 U 106-47-8	108-60-12,2'-Oxybis(1-Chloropropane)	10	บ
67-72-1		10	U
67-72-1	621-64-7N-Nitroso-Di-n-Propylamine	10	שו
98-95-3Nitrobenzene 10 U 78-59-1Isophorone 10 U 88-75-5	67-72-1Hexachloroethane	10	U
78-59-1	98-95-3Nitrobenzene	10	lσ
88-75-52-Nitrophenol 10 U 105-67-92,4-Dimethylphenol 10 U 111-91-1bis(2-Chloroethoxy)Methane 10 U 120-83-22,4-Dichlorophenol 10 U 120-82-11,2,4-Trichlorobenzene 10 U 91-20-3Naphthalene 10 U 106-47-8Naphthalene 10 U 87-68-3Naphthalene 10 U 87-68-3	78-59-1Isophorone	10	ט
105-67-92,4-Dimethylphenol 10 U 111-91-1bis(2-Chloroethoxy)Methane 10 U 120-83-22,4-Dichlorophenol 10 U 120-82-11,2,4-Trichlorobenzene 10 U 91-20-3Naphthalene 10 U 106-47-8	88-75-52-Nitrophenol	10	Ū
111-91-1bis (2-Chloroethoxy) Methane 10 U 120-83-22, 4-Dichlorophenol 10 U 120-82-11, 2, 4-Trichlorobenzene 10 U 91-20-3Naphthalene 10 U 106-47-8Naphthalene 10 U 87-68-3	105-67-92,4-Dimethylphenol	10	ט
120-83-22,4-Dichlorophenol 10 U 120-82-11,2,4-Trichlorobenzene 10 U 91-20-3Naphthalene 10 U 106-47-8Naphthalene 10 U 87-68-3Hexachlorobutadiene 10 U 59-50-74-Chloro-3-Methylphenol 10 U 91-57-62-Methylnaphthalene 10 U 77-47-4Hexachlorocyclopentadiene 10 U 88-06-22,4,6-Trichlorophenol 10 U 95-95-42,4,5-Trichlorophenol 25 U 91-58-72-Chloronaphthalene 10 U 88-74-42-Nitroaniline 25 U 131-11-3Dimethyl Phthalate 10 U 208-96-8Acenaphthylene 10 U 606-20-23-Nitroaniline 25 U	111-91-1bis(2-Chloroethoxy) Methane	10	υ
120-82-11,2,4-Trichlorobenzene 10 U 91-20-3Naphthalene 10 U 106-47-8	120-83-22,4-Dichlorophenol	10	ט ו
91-20-3Naphthalene 10 U 106-47-84-Chloroaniline 10 U 87-68-3Hexachlorobutadiene 10 U 59-50-74-Chloro-3-Methylphenol 10 U 91-57-62-Methylnaphthalene 10 U 77-47-4Hexachlorocyclopentadiene 10 U 88-06-22,4,6-Trichlorophenol 10 U 95-95-42,4,5-Trichlorophenol 25 U 91-58-72-Chloronaphthalene 10 U 88-74-42-Nitroaniline 25 U 131-11-3Dimethyl Phthalate 10 U 208-96-8Acenaphthylene 10 U 606-20-23-Nitroaniline 25 U		10	ប
106-47-84-Chloroaniline 10 U 87-68-3Hexachlorobutadiene 10 U 59-50-74-Chloro-3-Methylphenol 10 U 91-57-62-Methylnaphthalene 10 U 77-47-4Hexachlorocyclopentadiene 10 U 88-06-22,4,6-Trichlorophenol 10 U 95-95-42,4,5-Trichlorophenol 25 U 91-58-72-Chloronaphthalene 10 U 88-74-42-Nitroaniline 25 U 131-11-3Dimethyl Phthalate 10 U 208-96-8Acenaphthylene 10 U 606-20-23-Nitroaniline 25 U	91-20-3Naphthalene	10	Ū
59-50-74-Chloro-3-Methylphenol 10 U 91-57-62-Methylnaphthalene 10 U 77-47-4Hexachlorocyclopentadiene 10 U 88-06-22,4,6-Trichlorophenol 10 U 95-95-42,4,5-Trichlorophenol 25 U 91-58-72-Chloronaphthalene 10 U 88-74-42-Nitroaniline 25 U 131-11-3Dimethyl Phthalate 10 U 208-96-8Acenaphthylene 10 U 606-20-22,6-Dinitrotoluene 10 U 99-09-23-Nitroaniline 25 U	106-47-84-Chloroaniline	10	ט
91-57-62-Methylnaphthalene 10 U 77-47-4Hexachlorocyclopentadiene 10 U 88-06-22,4,6-Trichlorophenol 10 U 95-95-42,4,5-Trichlorophenol 25 U 91-58-72-Chloronaphthalene 10 U 88-74-42-Nitroaniline 25 U 131-11-3Dimethyl Phthalate 10 U 208-96-8Acenaphthylene 10 U 606-20-23-Nitroaniline 25 U	87-68-3Hexachlorobutadiene		บ
91-57-62-Methylnaphthalene 10 U 77-47-4Hexachlorocyclopentadiene 10 U 88-06-22,4,6-Trichlorophenol 10 U 95-95-42,4,5-Trichlorophenol 25 U 91-58-72-Chloronaphthalene 10 U 88-74-42-Nitroaniline 25 U 131-11-3Dimethyl Phthalate 10 U 208-96-8Acenaphthylene 10 U 606-20-23-Nitroaniline 25 U	59-50-74-Chloro-3-Methylphenol	10	U
77-47-4	91-57-62-Methylnaphthalene		ש
88-06-22,4,6-Trichlorophenol 10 U 95-95-42,4,5-Trichlorophenol 25 U 91-58-72-Chloronaphthalene 10 U 88-74-42-Nitroaniline 25 U 131-11-3Dimethyl Phthalate 10 U 208-96-8Acenaphthylene 10 U 606-20-22,6-Dinitrotoluene 10 U 99-09-23-Nitroaniline 25 U	77-47-4Hexachlorocyclopentadiene	10	ប
95-95-42,4,5-Trichlorophenol 25 U 91-58-72-Chloronaphthalene 10 U 88-74-42-Nitroaniline 25 U 131-11-3Dimethyl Phthalate 10 U 208-96-8Acenaphthylene 10 U 606-20-22,6-Dinitrotoluene 10 U 99-09-23-Nitroaniline 25 U	88-06-22,4,6-Trichlorophenol	10	ַ
91-58-72-Chloronaphthalene 10 U 88-74-42-Nitroaniline 25 U 131-11-3Dimethyl Phthalate 10 U 208-96-8Acenaphthylene 10 U 606-20-22,6-Dinitrotoluene 10 U 99-09-23-Nitroaniline 25 U	95-95-42,4,5-Trichlorophenol	25	ប
88-74-42-Nitroaniline 25 U 131-11-3Dimethyl Phthalate 10 U 208-96-8Acenaphthylene 10 U 606-20-22,6-Dinitrotoluene 10 U 99-09-23-Nitroaniline 25 U	91-58-72-Chloronaphthalene	10	ប
208-96-8Acenaphthylene 10 U 606-20-22,6-Dinitrotoluene 10 U 99-09-23-Nitroaniline 25 U	88-74-42-Nitroaniline	25	ប
208-96-8Acenaphthylene 10 U 606-20-22,6-Dinitrotoluene 10 U 99-09-23-Nitroaniline 25 U	131-11-3Dimethyl Phthalate	10	[ซ
606-20-22,6-Dinitrotoluene	208-96-8Acenaphthylene	10	υ
99-09-23-Nitroaniline 25 U	606-20-22,6-Dinitrotoluene	10	U
83-32-9Acenaphthene10 U	99-09-23-Nitroaniline	25	lυ
	83-32-9Acenaphthene	10	ַ ט
			l

3/90

Lab Name: <u>COMPUCHEM</u> ,	RTP	Contract:	68D10083		CHY	07
Lab Code: COMPU	Case No.: <u>17744</u>	SAS No.:	6579НО	SDG	No.: 9	CHY02
Matrix: (soil/water)	WATER_		Lab Sample	ID:	4774	60
Sample wt/vol:	1000 (g/mL) ML		Lab File I	D:	GH07	7460B 5 2
Level: (low/med)	LOW		Date Recei	ved:	01/2	9/92
% Moisture:	decanted: (Y/N) _		Date Extra	cted:	02/0	1/92
Concentrated Extract	Volume: 1000 (uL)	Date Analy:	zed:	02/0	3/92
Injection Volume:	2.0(uL)		Dilution Fa	actor	:	1.0
GPC Cleanup: (Y/N) CAS NO.	<u>-</u>	CONC	ENTRATION L		-	Q .
51-28-5	2,4-Dinitrophen	ol			25	

51-28-52,4-Dinitrophenol	25	บ
100-02-74-Nitrophenol	- - <u>1</u>	J
132-64-9Dibenzofuran	- 10	Ū
121-14-22,4-Dinitrotoluene	10	บั
84-66-2Diethylphthalate	- 10	ϋ
7005-72-34-Chlorophenyl-phenylether	10	Ü
B6-73-7Fluorene	10	lu
100-01-64-Nitroaniline	25	ט U
534-52-14,6-Dinitro-2-Methylphenol	- 25	Ü
36-30-6N-Nitrosodiphenylamine (1)	10	U
101-55-34-Bromophenyl-phenylether	10	l ti
118-74-1Hexachlorobenzene	10	ΰ
37-86-5Pentachlorophenol	- 25	Ü
35-01-8Phenanthrene	10	Ü
120-12-7Anthracene	- 10	Ü
36-74-8Carbazole	- 10	Ü
34-74-2Di-n-Butylphthalate	10	เบ็
206-44-0Fluoranthene	10	บั
129-00-0Pyrene	- 10	u
85-68-7Butylbenzylphthalate	- 10	บั
91-94-13,3'-Dichlorobenzidine	10	l ŭ
56-55-3Benzo(a) Anthracene	- 10	บ็
218-01-9	- f	ϋ
218-01-9Chrysene 117-81-7bis(2-Ethylhexyl)Phthalate	- 10	ប្រ
117-84-0Di-n-Octyl Phthalate	- 10	Ü
205-99-2Benzo(b)Fluoranthene	10	Ü
207-08-9Benzo(k)Fluoranthene	10	ϋ
50-32-8Benzo(a) Pyrene	- 10	Ü
193-39-5Indeno(1,2,3-cd)Pyrene		บั
53-70-3Dibenz (a, h) Anthracene	10	Ü
191-24-2Benzo(g,h,i)Perylene	1 10	Ü
Total Demokal William Tene	-	
		•

(1) - Cannot be separated from Diphenylamine

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

FΡΔ	SAMPLE	NO
L FA	SAMPLE	NO.

Girage.

	CHY07
Lab Name: COMPUCHEM.RTP Contract	
Lab Code: COMPU Case No.: 17744 SAS No.	: 6579HO SDG No.: CHY02
Matrix: (soil/water) WATER	Lab Sample ID: 477460
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: GH077460B52
Level: (low/med) LOW	Date Received: 01/29/92
% Moisture: decanted: (Y/N)	Date Extracted: 02/01/92
Concentrated Extract Volume: 1000 (uL)	Date Analyzed: 02/03/92
Injection Volume: 2.0(uL)	Dilution Factor:1.0
PC Cleanup: (Y/N) N pH:	
* * * * * * * * * * * * * * * * * * * *	ENTRATION UNITS: L or ug/Kg) <u>UG/L</u>

RT

EST. CONC.

COMPOUND NAME

CAS NUMBER

CHY07

Q

Lab Name: COMPUCHEM, RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02

Matrix: (soil/water) WATER Lab Sample ID: 477460

Sample wt/vol: 1000(g/ml)ML Lab File ID:

% Moisture: decanted: (Y/N) Date Received: 01/29/92

Extraction: (SepF/Cont/Sonc) SEPF Date Extracted: 01/30/92

Concentrated Extract Volume: 10000(uL) Date Analyzed: 02/04/92

Injection Volume: 2.0(uL) Dilution Factor: 1

GPC Cleanup: (Y/N)N pH: Sulfur Cleanup: (Y/N)N

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/kg)UG/L

319-84-6	alpha-BHC	0.050 U
319-85-7	beta-BHC	0.050 U
319-86-8	delta-BHC	0.050iU
58-89-9	gamma-BHC (Lindane)	0.050iU
76-44-8	Heptachlor	l 0.050IU
309-00-2	Aldrin	0.050 U
1024-57-3	Aldrin	0.050 iU
959-98-8	Endosulfan I	I0.050 U
60-57-1	Dieldrin	I0.10IU
72-55-9	4,4'-DDE	0.10 U
72-20-8	Endrin	0.10 U
33213-65-9	Endosulfan II	0.10 U
72~54-8	4,4'-DDD	! 0.10!0
1031-07-8	Endosulfan sulfate	0.10 U
50-29-3	4,4'-DDT	0.10 U
72-43-5	Methoxychlor	
53494-70-5	Endrin ketone	0.10 U
7421-93-4	Endrin aldehyde	
5103-71-9	alpha-Chlordane	0.050 U
5103-74-2	gamma-Chlordane	0.050 U
8001-35-2	Toxaphene	
12674-11-2	Aroclor-1016	1.0 U
11104-28-2	Aroclor-1221	
11141-16-5	Aroclor-1232	1.0 U
53469-21-9	Aroclor-1242	
12672-29-6	Aroclor-1248	1.0 U
11097-69-1	Aroclor-1254	1.0 U
11096-82-5	Aroclor-1260	1.0 U

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

 $_{5.0}$ (g/mL) ML

COMPOUND

EPA SAMPLE NO.

Holor

CN077464B51

Q

Lab Code: <u>COMPU</u> Case No.: <u>17744</u> SAS No.: <u>6579HO</u> SDG No.: <u>CHY02</u>

Contract: 68D10083

Matrix: (soil/water) WATER Lab Sample ID: 477464

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: not dec. ____ Date Analyzed: 02/02/92

GC Column: DB-624 ID: 0.530 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

Lab File ID:

74-87-3Chloromethane	10	U
74-83-9Bromomethane	10	U
75-01-4Vinyl Chloride	10	U
75-00-3Chloroethane	10	ប
75-09-2Methylene Chloride	22	В
67-64-1Acetone	10	ប
75-15-0Carbon Disulfide	10	U
75-35-41,1-Dichloroethene ·	10	U
75-34-31,1-Dichloroethane	10	U
540-59-01,2-Dichloroethene (total)	10	บ
67-66-3Chloroform	10	Ŭ
107-06-21,2-Dichloroethane	10	Ŭ
78-93-32-Butanone	10	บั
71-55-61,1,1-Trichloroethane	10	Ū
56-23-5Carbon Tetrachloride	10	Ū
75-27-4Bromodichloromethane	10	Ü
78-87-51,2-Dichloropropane	10	U
10061-01-5cis-1,3-Dichloropropene	10	U
79-01-6Trichloroethene	10	บ
124-48-1Dibromochloromethane	10	ט
79-00-51,1,2-Trichloroethane	10	บ
71-43-2Benzene	10	ับ
10061-02-6Trans-1,3-Dichloropropene	10	ប
75-25-2Bromoform	10	บ
108-10-14-Methyl-2-Pentanone	10	บ
591-78-62-Hexanone	10	ϋ
127-18-4Tetrachloroethene	10	บั
79-34-51,1,2,2-Tetrachloroethane	10	บ
108-88-3Toluene	10	U
108-90-7Chlorobenzene	10	U
100-41-4Ethylbenzene	10	Ū
100-42-5Styrene	10	บั
1330-20-7Xylene (total)	10	Ü

Lab Name: COMPUCHEM.RTP

Sample wt/vol:

CAS NO.

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPLE	NO.
-----	--------	-----

Soil Aliquot Volume: ____(uL)

Lab Name: COMPUCHEM.RTP	Contract: 68D10083	CHY08
Lab Code: COMPU Case No.: 17744	SAS No.: 6579HO SDG	No.: <u>CHY02</u>
Matrix: (soil/water) WATER	Lab Sample ID:	477464
Sample wt/vol: 5.0 (g/mL) ML	Lab File ID:	CN077464B51
Level: (low/med) LOW	Date Received:	01/29/92
% Moisture: not dec	Date Analyzed:	02/02/92
GC Column: DB-624 ID: 0.530 (mm)	Dilution Factor	:1.0

Number TICs found: 0 CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

1		<u> </u>		,
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
2272222222222	- 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

Soil Extract Volume: _____ (uL)

Q

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

COMPOUND

Lab Name: COMPUCHEM, RTP Contract:	68D10083	CHY08
ab Code: COMPU Case No.: 17744 SAS No.:	6579HO SDG 1	No.: <u>CHY02</u>
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	477464
ample wt/vol: 1000 (g/mL) ML	Lab File ID:	GH077464B52
evel: (low/med) LOW	Date Received:	01/29/92
<pre>% Moisture: decanted: (Y/N)</pre>	Date Extracted:	02/01/92
oncentrated Extract Volume: 1000 (uL)	Date Analyzed:	02/04/92
Injection Volume: 2.0(uL)	Dilution Factor	1.0
Cleanup: (Y/N) N pH:	ENTRATION UNITS:	•

(ug/L or ug/Kg) UG/L

		 _
108-95-2Phenol	10	ט
111-44-4bis(2-Chloroethyl)Ether	10	ן ט
95-57-82-Chlorophenol	10	ן ט
541-73-11,3-Dichlorobenzene	10	ן ט
106-46-71,4-Dichlorobenzene	10	ט
95-50-11,2-Dichlorobenzene	10	U
95-48-72-Methylphenol	10	ן ט
108-60-12,2'-Oxybis(1-Chloropropane)_	10	ט
106-44-54-Methylphenol	10	ŭ
621-64-7N-Nitroso-Di-n-Propylamine	10	TI I
67-72-1Hexachloroethane	10	U
98-95-3Nitrobenzene	10	lu l
79-59-1	10	ן ט
88-75-52-Nitrophenol	10	ן ט
105-67-92,4-Dimethylphenol	10	ט ו
111-91-1bis(2-Chloroethoxy) Methane	10	ן ט
120-83-22,4-Dichlorophenol	10	ן ט
120-82-11,2,4-Trichlorobenzene	10	ן ט
91-20-3Naphthalene	10	l u l
106-47-84-Chloroaniline	10	U
87-68-3Hexachlorobutadiene	10	U
59-50-74-Chloro-3-Methylphenol	10	ן ט
91-57-62-Methylnaphthalene	10	បី
77-47-4Hexachlorocyclopentadiene	10	lu l
88-06-22,4,6-Trichlorophenol	10	ט ו
95-95-42,4,5-Trichlorophenol	25	Tu
91-58-72-Chloronaphthalene	10	ט
88-74-42-Nitroaniline	25	ן ט
131-11-3Dimethyl Phthalate	10	u
208-96-8Acenaphthylene	10	u l
606-20-22,6-Dinitrotoluene	10	ן מ
99-09-23-Nitroaniline	25	U
83-32-9Acenaphthene	10	ט
03-32-9Acenaphene	10	
	l	· I ——— ·

CAS NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

"KIGINA"

Beerl.

CHY08

Lab Name: COMPUCHEM, RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02

Matrix: (soil/water) WATER

Sample wt/vol: 1000 (g/mL) ML Lab File ID: GH077464B52

Level: (low/med) LOW___

Date Received: 01/29/92

% Moisture: ____ decanted: (Y/N) ___ Date Extracted: 02/01/92

Lab Sample ID: <u>477464</u>

Concentrated Extract Volume: 1000 (uL)

Date Analyzed: 02/04/92

Injection Volume: _____2.0(uL)

Dilution Factor: ____1.0

GPC Cleanup: (Y/N) N pH: ____

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

51-28-52,4-Dinitrophenol	25	U
.00-02-74-Nitrophenol	25	U
132-64-9Dibenzofuran	10	ับ
121-14-22,4-Dinitrotoluene	10	U
84-66-2Diethylphthalate	10	ט
7005-72-34-Chlorophenyl-phenylether	10	ען
86-73-7Fluorene	10	ן ט
100-01-64-Nitroaniline	25	U
534-52-14,6-Dinitro-2-Methylphenol	25	שׁ
86-30-6N-Nitrosodiphenylamine (1)	10	ען
101-55-34-Bromophenyl-phenylether	10	ע
118-74-1Hexachlorobenzene	10	ע∖
87-86-5Pentachlorophenol	25	บ
85-01-8Phenanthrene	10	שׁ
120-12-7Anthracene	10	שׁ
86-74-8Carbazole	10	ַ ט
84-74-2Di-n-Butylphthalate	10	บ
206-44-0Fluoranthene	10	ับ
129-00-0Pyrene	10	บ
85-68-7Butylbenzylphthalate	10	ប
91-94-13,3'-Dichlorobenzidine	10	ַט
56-55-3Benzo(a)Anthracene	10	บ
218-01-9Chrysene	10	U
117-81-7bis(2-Ethylhexyl)Phthalate	10	ט
117-84-0Di-n-Octyl Phthalate	10	ט
205-99-2Benzo(b) Fluoranthene	10	ט
207-08-9Benzo(k)Fluoranthene	10	ט
50-32-8Benzo(a)Pyrene	10	U
193-39-5Indeno(1,2,3-cd)Pyrene	10	ן ט
53-70-3Dibenz(a,h)Anthracene	10	ឋ
191-24-2Benzo(g,h,i) Perylene	10	U

FORM I SV-2

3/90

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPLE	NO
-----	--------	----

Lab Name: COMPUCHEM, RTP	CONTRACT: 68D10083 CHY08				
Lab Code: COMPU Case No.: 17744	SAS No.: 6579HO SDG No.: CHY02				
Matrix: (soil/water) WATER_	Lab Sample ID: 477464				
Sample wt/vol: 1000 (g/mL) MI	Lab File ID: <u>GH077464B52</u>				
Level: (low/med) LOW	Date Received: 01/29/92				
% Moisture: decanted: (Y/N)	Date Extracted: 02/01/92				
Concentrated Extract Volume: 1000	_(uL) Date Analyzed: 02/04/92				
Injection Volume: 2.0(uL)	Dilution Factor: 1.0				
GPC Cleanup: (Y/N) N pH: _					
CONCENTRATION UNITS: Number TICs found:0 (ug/L or ug/Kg) <u>UG/L</u>					
CAS NUMBER COMPOUND N	AME RT EST. CONC. O				

PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CHY08

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02

SEPF

Matrix: (soil/water) WATER

Lab Sample ID: <u>477464</u>

Sample wt/vol:

1000(g/ml)ML

Lab File ID:

% Moisture:

decanted: (Y/N)

Date Received: 01/29/92

Extraction: (SepF/Cont/Sonc)

Date Extracted: 01/30/92

Concentrated Extract Volume: 10000(uL)

Date Analyzed: 02/04/92

Injection Volume: 2.0(uL)

Dilution Factor: 1

CONCENTRATION UNITS:

GPC Cleanup: (Y/N)N

pH:

Sulfur Cleanup: (Y/N) N

CAS NO.	COMPOUND	(ug/L or ug/Kg) <u>UG/L</u>	Q
319-84-6	alpha-BHC	0.05	
319-85-7	beta-BHC	j 0.05	0 U
319-86-8	delta-BHC	I0.05	0 I U
58-89-9	gamma-BHC (Linda	ane)	0 U
76-44-8	Heptachlor	0.05	010
309-00-2	Aldrin	0.05 ide0.05	Q U
1024-57-3	Heptachlor epoxi	idei0.05	0 i U
959-98-8	Endosulfan I		0 U
60-57-1	Dieldrin	0.1	0 U
72-55-9	4,4'-DDE		Q i U
72-20-8	Endrin	1 1	O LTT
33213-65-9	Endosulfan II	1 0.1	0 i ti
72-54-8	4 , 4 ' -DDD	0.004 ate0.1	6 JP
1031-07-8	Endosulfan sulfa	ate	0 i U
50-29-3	4,4'-DDT	0,1	0 i U
72-43-5	Methoxychlor		4 JP
53494-70-5	Endrin ketone	0.1	0 U
7421-93-4	Endrin aldehyde_	ii0,1	0 U
5103-71-9	alpha-Chlordane	0.05	0 U
5103-74-2	gamma-Chlordane_	I0.05	0 U
8001-35-2	Toxaphene	ii5.	0 U
12674-11-2	Aroclor-1016	ii1.	
11104-28-2	Aroclor-1221	ii2.	0 i U
11141-16-5	Aroclor-1232	ii1.	
53469-21-9	Aroclor-1242	1.	OIU
12672-29-6	Aroclor-1248	iii,	
11097-69-1	Aroclor-1254	1.	0 U
	Aroclor-1260		0 i U

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

СНУ09	
-------	--

THEIRA.

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02

Matrix: (soil/water) WATER Lab Sample ID: 477465

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: C2R77465B51

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: not dec. ____ Date Analyzed: 02/06/92

GC Column: <u>DB-624</u> ID: <u>0.530</u> (mm) Dilution Factor: <u>1.0</u>

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

74-87-3Chloromethane	<u> </u>	10	ū
74-83-9Bromomethane		10	U
75-01-4Vinyl Chloride		10	U
75-00-3Chloroethane		10	บ
75-09-2Methylene Chloride	·	73	В
67-64-1Acetone		34	
75-15-0Carbon Disulfide_		10	U
75-35-41,1-Dichloroethene	2	10	U
75-34-31,1-Dichloroethane	2	10	ַ
540-59-01,2-Dichloroethene	(total)	10	U
67-66-3Chloroform	· -	10	U
107-06-21,2-Dichloroethane		10	U
78-93-32-Butanone		10	U
71-55-61,1,1-Trichloroeth	nane	10	U
56-23-5Carbon Tetrachlori	de	10	ט
75-27-4Bromodichlorometha		10	ן ט
78-87-51,2-Dichloropropar	ne	10	ט
10061-01-5cis-1,3-Dichloropr	ropene	10	U
79-01-6Trichloroethene		10	ט
124-48-1Dibromochlorometha	ne	10	ש
79-00-51,1,2-Trichloroeth	nane	10	שׁ
71-43-2Benzene		10	Ü
10061-02-6Trans-1,3-Dichlore	propene	10	"
75-25-2Bromoform		10	Ü
108-10-14-Methyl-2-Pentance	ne	10	Ū
591-78-62-Hexanone		10	U
127-18-4Tetrachloroethene		10	Ū
79-34-51,1,2,2-Tetrachlor	coethane	10	บ
108-88-3Toluene		10	Ü
108-90-7Chlorobenzene		10	Ü
100-41-4Ethylbenzene		10	บั
100-42-5Styrene		10	U
1330-20-7Xylene (total)		10	U

1E

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

COMPOUND NAME

EPA	SAMPLE	NO.
-----	--------	-----

Lab Name: COMPUCHEM.RTP	Contract: 68D10083 CHY09
Lab Code: COMPU Case No.: 17744	SAS No.: 6579HO SDG No.: CHY02
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: 477465
Sample wt/vol: 5.0 (g/mL) ML	Lab File ID: <u>C2R77465B51</u>
Level: (low/med) <u>LOW</u>	Date Received: 01/29/92
% Moisture: not dec	Date Analyzed: 02/06/92
GC Column: <u>DB-624</u> ID: <u>0.530</u> (mm)	Dilution Factor:1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume:(uL)
Number TICs found:0	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

RT

EST. CONC.

CAS NUMBER

Lab Name: COMPUCHEM.RTP Contract: 68D10083	CHY09
Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SI	OG No.: <u>CHY02</u>
Matrix: (soil/water) <u>WATER</u> Lab Sample II	D: <u>477465</u>
Sample wt/vol: 1000 (g/mL) ML Lab File ID:	GH077465B52
Level: (low/med) LOW Date Received	i: <u>01/29/92</u>
% Moisture: decanted: (Y/N) Date Extracted	ed: <u>02/01/92</u>
Concentrated Extract Volume: 1000 (uL) Date Analyzed	d: <u>02/04/92</u>
Injection Volume: 2.0(uL) Dilution Fact	or: <u>1.0</u>
GPC Cleanup: (Y/N) N pH:	
CONCENTRATION UN	ITS:
CAS NO. COMPOUND (ug/L or ug/Kg) [
108-95-2Phenol	10 U
111-44-4bis(2-Chloroethyl)Ether	10 U
95-57-82-Chlorophenol	10 U
541-73-11,3-Dichlorobenzene	10 U
106-46-71,4-Dichlorobenzene	10 0
95-50-11,2-Dichlorobenzene	10 U
95-48-72-Methylphenol	10 U
108-60-12,2'-Oxybis(1-Chloropropane)	10 U
106-44-54-Methylphenol	10 U
621-64-7N-Nitroso-Di-n-Propylamine	10 U
98-95-3Nitrobenzene	10 U
78-59-1Isophorone	10 U
88-75-52-Nitrophenol	10 U
105-67-92,4-Dimethylphenol	10 0
111-91-1bis(2-Chloroethoxy)Methane	10 0
120-83-22,4-Dichlorophenol	10 0
120-82-11,2,4-Trichlorobenzene	10 U
91-20-3Naphthalene	10 U
106-47-84-Chloroaniline_	10 U
87-68-3Hexachlorobutadiene	10 [U]
59-50-74-Chloro-3-Methylphenol	10 U
91-57-62-Methylnaphthalene	10 U
77-47-4Hexachlorocyclopentadiene	10 U
88-06-22,4,6-Trichlorophenol	10 U
95-95-42,4,5-Trichlorophenol	25 U
91-58-72-Chloronaphthalene 88-74-42-Nitroaniline	10 U 25 U
131-11-3Dimethyl Phthalate	10 0
208-96-8Acenaphthylene	10 0
606-20-22,6-Dinitrotoluene	10 U
99-09-23-Nitroaniline	25 U
20.00	10 1

FORM I SV-1

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

ab Name: <u>COMPUCHEM.R</u>	TP	Contract: 68D10		HY09
ab Code: COMPU C	ase No.: <u>17744</u>	SAS No.: 6579F	O SDG No.	: <u>CHY02</u>
Matrix: (soil/water)	WATER	Lab Sa	ample ID: 47	7465
sample wt/vol:	1000 (g/mL) ML	_ Lab Fi	le ID: GH	077465B 5 2
evel: (low/med)	LOW	Date F	Received: <u>01</u>	/29/92
Moisture:	decanted: (Y/N) _	Date H	extracted: <u>02</u>	/01/92
Concentrated Extract	Volume: 1000	(uL) Date A	nalyzed: <u>02</u>	/04/92
injection Volume:	2.0(uL)	Diluti	on Factor: _	1.0
SPC Cleanup: (Y/N)		CONCENTRAT	TION UNITS:	
CAS NO.	COMPOUND	(ug/L or u	ig/Kg) <u>UG/L</u>	Q
100-02-7 132-64-9 84-66-2 7005-72-3 86-73-7 100-01-6 534-52-1 86-30-6 101-55-3 118-74-1 87-86-5 85-01-8 120-12-7 86-74-8 206-44-0 129-00-0 85-68-7 91-94-1 56-55-3 218-01-9 117-81-7 205-99-2 207-08-9	4-Nitroaniline4,6-Dinitro-2-N-Nitrosodipher4-Bromophenyl-pHexachlorobenzePentachloropherPhenanthreneAnthraceneCarbazoleDi-n-ButylphthaFluoranthenePyreneButylbenzylphthaBenzo(a)AnthracChrysenebis(2-EthylhexyDi-n-Octyl PhthaBenzo(b)FluoranBenzo(k)FluoranBenzo(a)PyreneBenzo(a)PyreneIndeno(1,2,3-cd	methylphenol hylamine (1) henylether hene hol malate halate halate halate halate hthene hthene hthene	25 10 10 10 10 10 25 25	ממממממממממממממממממממממממממ

1F

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO

<u>1000</u> (g/mL) <u>ML</u>

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPLE	NO
-----	--------	----

GH077465B52

Lab File ID:

					CHY09
Lab	Name:	COMPUCHEM, RTP	Contract:	68D10083	

SDG No.: CHY02 Matrix: (soil/water) WATER_ Lab Sample ID: 477465

Date Received: 01/29/92 (low/med) LOW Level:

% Moisture: ____ decanted: (Y/N) ___ Date Extracted: 02/01/92

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 02/04/92

Injection Volume: 2.0(uL) Dilution Factor: _____1.0

PC Cleanup: (Y/N) N pH: ____

CONCENTRATION UNITS: Number TICs found: 3 (ug/L or ug/Kg) UG/L

Sample wt/vol:

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
2.	TETRACHLOROETHANE UNKNOWN 1,3,5,7-CYCLOOCTATETRAENE	4.63 4.77 4.28	3 4 47	J J

PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CHY09

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02

Matrix: (soil/water) WATER Lab Sample ID: 477465

Sample wt/vol: 1000(g/ml)ML Lab File ID:

% Moisture: decanted: (Y/N) Date Received: 01/29/92

Extraction: (SepF/Cont/Sonc) SEPF Date Extracted: 01/30/92

Concentrated Extract Volume: 10000(uL) Date Analyzed: 02/04/92

Injection Volume: 2.0(uL) Dilution Factor: 1

GPC Cleanup: (Y/N)N pH: Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg)<u>UG/L</u> Q 0.05010 319-84-6-----alpha-BHC_ 0.050 U 319-85-7-----beta-BHC 319-86-8-----delta-BHC_ 0.050 | U 58-89-9----gamma-BHC (Lindane)_ 0.05010 | 76-44-8-----Heptachlor_ 0.05010 | 309-00-2----Aldrin <u>0.050|U</u> | 1024-57-3-----Heptachlor epoxide <u>0.050|U</u> | 959-98-8-----Endosulfan I_____ <u>0.050|U</u> 60-57-1-----Dieldrin 0.10 U 72-55-9-----4,4'-DDE <u>0.10|U</u> 72-20-8-----Endrin <u>0.10|U</u> 33213-65-9----Endosulfan II <u>0.10|U</u> 0.0050|JP 72-54-8-----4,4'-DDD_ 0.10 U | 1031-07-8----Endosulfan sulfate ___ 50-29-3----4,4'-DDT 0.10|U 72-43-5-----Methoxychlor_ <u>0.50|U</u> 53494-70-5----Endrin ketone 0.10 | U 7421-93-4----Endrin aldehyde_ <u>0.10|U</u> | 5103-71-9----alpha-Chlordane_ 0.050IU | 5103-74-2-----qamma-Chlordane <u>0.050|U</u> 8001-35-2----Toxaphene <u>5.0|U</u> 12674-11-2----Aroclor-1016 <u> 1.0|U</u> 11104-28-2----Aroclor-1221 <u> 2.0|U</u> 11141-16-5----Aroclor-1232 1.0 I U 53469-21-9----Aroclor-1242 <u>1.01U</u> 1.0 | U 12672-29-6----Aroclor-1248 11097-69-1----Aroclor-1254_ 1.0 U 11096-82-5----Aroclor-1260___ 1.0 U

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02

Matrix: (soil/water) WATER Lab Sample ID: 477466

Sample wt/vol: 5.0 (g/mL) ML Lab File ID: CN077466B51

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: not dec. ____ Date Analyzed: 02/03/92

GC Column: DB-624 ID: 0.530 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ___(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg)		Q
74-87-3	Chloromethane		10	Ū
74-83-9	Bromomethane		10	ับ
75-01-4	Vinyl Chloride_		10	ט
	~ \.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	1	10	ט
75-09-2	Methylene Chlori	de	7	BJ
67-64-1	Acetone		10	U
75-15-0	Acetone Carbon Disulfide		10	U
75-35-4	1,1-Dichloroethe	ene l	10	ប
75-34-3	1,1-Dichloroetha	ne	10	ប
540-59-0	1,2-Dichloroethe	ne (total)	10	U
67-66-3	Chloroform		10	ט
107-06-2	1,2-Dichloroetha	ine	10	U
78-93-3	2-Butanone		10	U
71-55-6	1,1,1-Trichloroe	thane	10	U
56-23-5	Carbon Tetrachlo	ride	10	U
75-27-4	Bromodichloromet	hane	10	ט
78-87-5	1,2-Dichloroprop	ane	10	U
10061-01-5-	cis-1,3-Dichlord	propene	10	Ū
79-01-6	Trichloroethene		10	U
124-48-1	Dibromochloromet	hane	10	U
79-00-5	1,1,2-Trichloroe	thane	10	U
71-43-2	Benzene		10	U
10061-02-6-	Trans-1,3-Dichlo	ropropene	10	ט
	Bromoform		10	U
	4-Methyl-2-Penta		10	Ū
	2-Hexanone		10	U
	Tetrachloroether		10	U
	1,1,2,2-Tetrachl	oroethane	10	U
	Toluene		10	U
108-90-7	Chlorobenzene		10	U
100-41-4	Ethylbenzene		10	U
100-42-5 -	Styrene		10	U
1330-20-7	Xylene (total)		10	ប

FORM I VOA

ामगुर्धिः

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA	SAMPLE	NO
-----	--------	----

Lab Name: COMPUCHEM.RTP Co	ontract: 68D10083 CHY10
Lab Code: COMPU Case No.: 17744 S	SAS No.: 6579HO SDG No.: CHY02
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: 477466
Sample wt/vol: 5.0 (g/mL) ML	Lab File ID: <u>CN077466B51</u>
Level: (low/med) <u>LOW</u>	Date Received: 01/29/92
% Moisture: not dec	Date Analyzed: 02/03/92
GC Column: <u>DB-624</u> ID: <u>0.530</u> (mm)	Dilution Factor:1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume:(uL)
Number TICs found:0	CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/L</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
	***************		==========	====
		l		

					CHY10
Lab	Name:	COMPUCHEM.RTP	Contract:	68D10083	
				•	

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02

Matrix: (soil/water) <u>WATER</u> Lab Sample ID: <u>477466</u>

Sample wt/vol: 1000 (g/mL) ML Lab File ID: GH077466B52

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: ____ decanted: (Y/N) ___ Date Extracted: 02/01/92

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 02/04/92

Injection Volume: 2.0(uL) Dilution Factor: 1.0

FPC Cleanup: (Y/N) N pH: ____ CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q

108-95-2Phenol	10	U
111-44-4bis(2-Chloroethyl)Ether	10	U
95-57-82-Chlorophenol	10	U
541-73-11,3-Dichlorobenzene	10	U
106-46-71,4-Dichlorobenzene	10	U
95-50-11,2-Dichlorobenzene	10	ַ
A 35 - 4 1 - 3 - 1 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -		U
05-48-72-Metnylphenol_ 108-60-12,2'-Oxybis(1-Chloropropane)_	10	U
LO6-44-5	10	U
521-64-7N-Nitroso-Di-n-Propylamine	10	U
57-72-1Hexachloroethane	10	U
98-95-3Nitrobenzene	10	U
78-59-1Isophorone	10	U
88-75-52-Nitrophenol	10	ប
105-67-92,4-Dimethylphenol 111-91-1bis(2-Chloroethoxy)Methane	10	U
111-91-1bis(2-Chloroethoxy)Methane	10	U
120-83-22,4-Dichlorophenol	10	U
120-82-11,2,4-Trichlorobenzene	10	U
91-20-3Naphthalene	10	U
106-47-84-Chloroaniline	10	U
37-68-3Hexachlorobutadiene	10	U
59-50-74-Chloro-3-Methylphenol	10	U
91-57-62-Methylnaphthalene	10	U
77-47-4Hexachlorocyclopentadiene	, 10	U
38-06-22,4,6-Trichlorophenol	10	ט
95-95-42,4,5-Trichlorophenol	25	ט
91-58-72-Chloronaphthalene	10	U
88-74-42-Nitroaniline	25	U
131-11-3Dimethyl Phthalate	10	U
208-96-8Acenaphthylene	10	ַ
606-20-22.6-Dinitrotoluene	10	ט
99-09-23-Nitroaniline	25	U
83-32-9Acenaphthene	10	U
		1

Lab Name: <u>COMPUCHEM.</u>	RTP Contra	ct: <u>68D10083</u>	СНУ10
- 	Case No.: <u>17744</u> SAS N	·	No.: CHY02
Matrix: (soil/water)	WATER	Lab Sample ID:	477466
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	GH077466B52
Level: (low/med)	LOW	Date Received:	01/29/92
% Moisture:	decanted: (Y/N)	Date Extracted:	02/01/92
Concentrated Extract	Volume: 1000 (uL)	Date Analyzed:	02/04/92
Injection Volume:	2.0(uL)	Dilution Factor	:1.0
GPC Cleanup: (Y/N)		ONORNIMON MION INTERC	_
CAS NO.		ONCENTRATION UNITS ug/L or ug/Kg) <u>UG/</u>	

		(49/15 01	49/149/	<u> </u>	×
51-28-5	2,4-Dinitrophenol_			25	U
100-02-7	4-Nitrophenol		-]	25	U
132-64-9	Dibenzofuran			10	ט
121-14-2	2,4-Dinitrotoluene		- }	10	U
				10	טו
7005-72-3	Diethylphthalate 4-Chlorophenyl-pher	nylether	-]	10	טן
86-73-7	Fluorene		- 	10	U
100-01-6	4-Nitroaniline		-	25	שׁן
534-52-1	4,6-Dinitro-2-Methy	ylphenol	~	25	ט
86-30-6	N-Nitrosodiphenvlar	nine (1)	Ī	10	U
101-55-3	4-Bromophenyl-pheny	vlether _	ļ	10	ט
118-74-1	Hexachlorobenzene	· · · · · ·	- ∤	10	U
87-86-5	Pentachlorophenol		- [25	ן ט
85-01-8	Phenanthrene		-}	10	ប
120-12-7	Anthracene		-[10	ט
86-74-8	Carbazole		-1	10	ט
84-74-2	Di-n-Butylphthalate		-	10	ט
206-44-0	Fluoranthene		-]	10	U
129-00-0	Pyrene		-1	10	ט
85-68-7	Butylbenzylphthalat	te	1	10	U
91-94-1	3,3'-Dichlorobenzio	iine		10	U
56-55-3	Benzo(a)Anthracene		- ∤	10	บ
218-01-9	Chrysene		⁻	10	U
117-81-7	bis(2-Ethylhexyl)Ph	nthalate	- 1	10	Ū
117-84-0	Di-n-Octvl Phthalat	te	1	10	เช้
205-99-2	·Benzo(b)Fluoranther	ne		10	Ū
207-08-9- <i>-</i>	Benzo(k)Fluoranther	ne	-{	10	บ
50-32-8	Benzo(a)Pvrene		ļ	10	Ū
193-39-5	Indeno(1,2,3-cd)Pyi	rene	·	10	บี
53-70-3	Dibenz(a,h)Anthrace	ene	1	10	υ
191-24-2	Benzo(g,h,i)Peryler	ne	-	10	Ū
			•}		-
			·		

(1) - Cannot be separated from Diphenylamine

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

~1	v	•	^
СΠ	1	1	u

GH077466B52

Lab	Name:	COMPUCHEM	RTP		Contract:	68D10083	_	CHY	/10 	
Lab	Code:	COMPU	Case No.:	17744	SAS No.:	6579HO	SDG	No.:	CHY02	

1 14. F &

Lab File ID:

Matrix: (soil/water) WATER Lab Sample ID: <u>477466</u>

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: ____ decanted: (Y/N) ____ Date Extracted: 02/01/92

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 02/04/92

Injection Volume: 2.0(uL) Dilution Factor: _____1.0

PC Cleanup: (Y/N) N pH: ____

Sample wt/vol: 1000 (g/mL) ML

CONCENTRATION UNITS: Number TICs found: 2 (ug/L or ug/Kg) <u>UG/L</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN	4.73	6	J
	UNKNOWN	4.75	11	J

1D PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CHY10

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02

Matrix: (soil/water) WATER Lab Sample ID: 477466

Sample wt/vol: 1000(g/ml)ML Lab File ID:

% Moisture: decanted: (Y/N) Date Received: 01/29/92

Extraction: (SepF/Cont/Sonc) SEPF Date Extracted: 01/30/92

Concentrated Extract Volume: 10000(uL) Date Analyzed: 02/04/92

Injection Volume: 2.0(uL) Dilution Factor: 1

GPC Cleanup: (Y/N)N pH: Sulfur Cleanup: (Y/N)N

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) <u>UG/L</u>	Q

CAS NO.	COMPOUND (ug/		
319-84-6	alpha-BHC	0.050	U
319-85-7	beta-BHC	1 0.0501	
319-86-8	delta-BHC	0.050	
58-89-9	gamma-BHC (Lindane)_	0.050	Ü
76-44-8	Heptachlor	0.0501	Ü
309-00-2	Aldrin	0.050	Ū
1024-57-3	Heptachlor epoxide	0.050	Ü
959-98-8	Endosulfan I	0.050	Ü
60-57-1	Dieldrin	0.10	Ü .
72-55-9	4,4'-DDE	0.101	บ
72-20-8	Endrin	l 0.10i	II
33213-65-9	Endosulfan II		U .
72-54-8	4,4'-DDDEndosulfan sulfate	0.0049	JP
1031-07-8	Endosulfan sulfate	0.10	U
50-29-3	4		<u>U</u>
72-43-5	Methoxychlor	0.50	Ū
53494-70-5	Endrin ketone		<u>U</u>
7421-93-4	Endrin aldehyde	1 0.101	U
5103-71-9	alpha-Chlordane		U
5103-74-2	gamma-Chlordane		<u>U</u>
8001-35-2	Toxaphene	15.01	<u>U</u>
12674-11-2	Aroclor-1016		<u>U</u>
11104-28-2	Aroclor-1221		<u>U</u>
11141-16-5	Aroclor-1232		<u>U</u>
53469-21-9	Aroclor-1242	1.0)	<u>U</u>
12672-29-6	Aroclor-1248	1.0	U
	Aroclor-1254		<u>U</u>
11096-82-5	Aroclor-1260		U
		<u> </u>	

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

				CHY11
Lab Name:	COMPUCHEM, RTP	Contract:	68D10083	

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477472

Sample wt/vol: 5.0 (g/mL) G Lab File ID: GR077472B54

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: not dec. 29
Date Analyzed: 02/03/92

GC Column: DB624 ID: 0.530 (mm) Dilution Factor: 1.0

Soil Extract Volume: _____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

74-87-3Chloromethane	14	ט
74-83-9Bromomethane	14	lΰ
75-01-4Vinyl Chloride	14	U
75-00-3Chloroethane	14	Ū
75-09-2Methylene Chloride	50	В
67-64-1Acetone	54	B
75-15-0Carbon Disulfide	14	١ ٠
75-35-41,1-Dichloroethene	14	ات
75-34-31,1-Dichloroethane	14	บ
540-59-01,2-Dichloroethene (total)	14	U
67-66-3Chloroform	14	Ü
107-06-21,2-Dichloroethane	14	lΰ
78-93-32-Butanone	14	Ū
71-55-61,1,1-Trichloroethane	3	J
56-23-5Carbon Tetrachloride	14	បៃ
75-27-4Bromodichloromethane	14	Ū
78-87-51,2-Dichloropropane	14	ט
10061-01-5cis-1,3-Dichloropropene	14	ប
79-01-6Trichloroethene	14	Ū
124-48-1Dibromochloromethane	14	Ū
79-00-51,1,2-Trichloroethane	14	Ū
71-43-2Benzene	14	Ū
10061-02-6Trans-1,3-Dichloropropene	14	U
75-25-2Bromoform	14	Ū
108-10-14-Methyl-2-Pentanone	14	Ū
591-78-62-Hexanone	14	Ū
127-18-4Tetrachloroethene	14	ט ו
79-34-51,1,2,2-Tetrachloroethane	14	שׁ
108-88-3Toluene	14	ΙŪ
108-90-7Chlorobenzene	14	Ū
100-41-4Ethylbenzene	14	Ū
100 10 C GL	14	Ü
1330-20-7Xylene (total)	14	บั

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

CHY11

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477472

igeria (16.46°)

Sample wt/vol: 30.5 (g/mL) G Lab File ID: GDJ77472A21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: ___29 decanted: (Y/N) N Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/12/92

Injection Volume: 2.0(uL) Dilution Factor: 2.0

GPC Cleanup: (Y/N) Y pH: 6.3

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG Q

08-95-2Phenol	920	ן ט
11-44-4bis(2-Chloroethyl)Ether	920	ט
5-57-82-Chlorophenol	920	ប
41-73-11,3-Dichlorobenzene	920	U
06-46-71,4-Dichlorobenzene	920	ប
5-50-11,2-Dichlorobenzene	920	שׁן
	TI	U
5-48-72-Methylphenol .08-60-12,2'-Oxybis(1-Chloropropane)	920	U
06-44-54-Methylphenol	920	ប
.06-44-54-Methylphenol .21-64-7N-Nitroso-Di-n-Propylamine	920	ט
7-72-1Hexachloroethane	920	ן ט
8-95-3Nitrobenzene	920	ע
8-59-1Isophorone	920	υ
8-75-52-Nitrophenol	920	U
05-67-92,4-Dimethylphenol	920	U
11-91-1bis(2-Chloroethoxy)Methane	920	Ū
20-83-22,4-Dichlorophenol	920	טן
20-82-11,2,4-Trichlorobenzene	920	ַט
1-20-3Naphthalene	920	ע
06-47-84-Chloroaniline	920	\ซ
7-68-3Hexachlorobutadiene	920	ן ט
9-50-74-Chloro-3-Methylphenol	920	ע
1-57-62-Methylnaphthalene	920	U
7-47-4Hexachlorocyclopentadiene	920	ט
8-06-22,4,6-Trichlorophenol	920	ט
5-95-42,4,5-Trichlorophenol	2200	ט
1-58-72-Chloronaphthalene	920	ט
8-74-42-Nitroaniline	2200	ן ט
31-11-3Dimethyl Phthalate	920	ט
08-96-8Acenaphthylene	100	J
06-20-22,6-Dinitrotoluene	920	U
9-09-23-Nitroaniline	2200	ט
3-32-9Acenaphthene	180	J

3/90

CHY11

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU

Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) <u>SOIL</u> Lab Sample ID: <u>477472</u>

Sample wt/vol: 30.5 (g/mL) G Lab File ID: GDJ77472A21

Level: (low/med) LOW Date Received: 01/29/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/12/92

Injection Volume: _____2.0(uL) Dilution Factor: ____2.0

PC Cleanup: (Y/N) Y pH: 6.3

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG O

51-28-5-----2,4-Dinitrophenol_____ U 2200 100-02-7----4-Nitrophenol 2200 U 132-64-9-----Dibenzofuran 120 J 121-14-2----2,4-Dinitrotoluene 920 U 84-66-2-----Diethylphthalate J 180 7005-72-3----4-Chlorophenyl-phenylether 920 U 86-73-7----Fluorene 270 J 100-01-6-----4-Nitroaniline 2200 U 534-52-1----4,6-Dinitro-2-Methylphenol_ U 2200 86-30-6----N-Nitrosodiphenylamine (1)___ U 920 101-55-3----4-Bromophenyl-phenylether U 920 118-74-1-----Hexachlorobenzene 920 U 87-86-5----Pentachlorophenol 2200 U 85-01-8-----Phenanthrene 2400 120-12-7-----Anthracene__ 550 J 86-74-8-----Carbazole 250 J 84-74-2----Di-n-Butylphthalate___ 920 U 206-44-0-----Fluoranthene 5600 129-00-0-----Pyrene 2900 85-68-7----Butylbenzylphthalate 920 91-94-1----3,3'-Dichlorobenzidine 920 U 56-55-3----Benzo(a)Anthracene 2300 218-01-9-----Chrysene 1800 117-81-7-----bis(2-Ethylhexyl)Phthalate 280 117-84-0-----Di-n-Octyl Phthalate_ 920 U 205-99-2----Benzo(b)Fluoranthene_ X 3800 207-08-9----Benzo(k)Fluoranthene___ X 3800 50-32-8-----Benzo(a) Pyrene 1800 193-39-5-----Indeno(1,2,3-cd)Pyrene__ 1200 53-70-3-----Dibenz(a,h)Anthracene 410 J 191-24-2----Benzo(g,h,i)Perylene___ 1200

(1) - Cannot be separated from Diphenylamine

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

CHY11

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477472

Sample wt/vol: 30.5 (g/mL) G Lab File ID: GDJ77472A21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: 29 decanted: (Y/N) N Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/12/92

Injection Volume: 2.0(uL) Dilution Factor: 2.0

Number TICs found: 24

GPC Cleanup: (Y/N) Y pH: <u>6.3</u>

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q =====
1.	UNKNOWN	4.38	1100	J
2.	UNKNOWN	4.60	1300	J
3.	ALDOL	4.75	2100	ABJ
4.	UNKNOWN	5.20	1700	J
5.	UNKNOWN	5.83	1600	J
6.	BLANK CONTAMINANT	9.12	370	BJ
7.	BLANK CONTAMINANT	11.19	1100	BJ
8.	UNKNOWN SILOXANE	12.04	1100	J
9.	UNKNOWN CARBOXYLIC ACID	12.32	550	J
10.	UNKNOWN PAH	12.35	650	J
11.	UNKNOWN SILOXANE	12.82	1100	J
12.	UNKNOWN PAH	13.97	1300	J
13.	UNKNOWN PAH	14.07	650	J
14.	UNKNOWN PAH	14.12	1000	J
15.	UNKNOWN SILOXANE	14.19	2100	J
16.	LABORATORY ARTIFACT	14.52	1100	BJ
17.	UNKNOWN SILOXANE	14.80	2100	J
18.	UNKNOWN	15.05	740	J
19.	UNKNOWN SILOXANE	15.42	1600	J
20.	UNKNOWN PAH	15.75	920	J
21.	UNKNOWN	15.97	1300	J
22.	UNKNOWN SILOXANE	16.02	1300	J
23.	UNKNOWN	17.05	2100	J
24.	BENZOFLUORANTHENE	17.19	2300	J

CHY11

Lab Name: COMPUCHEM, RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HQ SDG No.: CHY11

SONC

Matrix: (soil/water)SOIL

Lab Sample ID: <u>477472</u>

Sample wt/vol:

30.40(g/m1)G

Lab File ID:

CONCENTRATION UNITS:

% Moisture: 29 decanted: (Y/N)N

Date Received: <u>01/29/92</u>

Extraction: (SepF/Cont/Sonc)

Date Extracted: 02/03/92

Concentrated Extract Volume: 5000(uL)

Date Analyzed: 02/07/92

Injection Volume: 2.0(uL)

Dilution Factor: 1

GPC Cleanup: (Y/N)Y

рН:<u>6.3</u>

COMPOSIND

Sulfur Cleanup: (Y/N) N

CAS NO.	COMPOUND (u	g/L or ug/Kg) <u>UG/KG</u>	Q
	alpha-BHC		1.4
319-85-7	beta-BHC		.4 U
	delta-BHC		.4 U
58-89-9	gamma-BHC (Lindane)		34 PE
76-44-8	Heptachlor		.4 U
1 309-00-2	Aldrin		.4 P
1024-57-3	Heptachlor epoxide_		95 JP
959-98-8	Endosulfan I		.4 U
60-57-1	Dieldrin	111	
72-55-9	4,4'-DDE	i4	.6 U
1 72-20-8	Endrin		.2 JP
1 33213-65-9-	Endosulfan II	1 4	. 6 i U i
72-54-8	4,4'-DDD		.8 JP
1031-07-8	4,4'-DDD_ Endosulfan sulfate_	i 4	.6 U
50-29-3	4,4'-DDT	4	.6 U
72-43-5	Methoxychlor	j	.8 JPB
53494-70-5-	Endrin ketone		.8 JP
7421-93-4	Endrin aldehyde	4	.6 U
5103-71-9	alpha-Chlordane		.3 P
5103-74-2	gamma-Chlordane		.0 JP
	Toxaphene		40 U
12674-11-2-	Aroclor-1016		46 U
11104-28-2-	Aroclor-1221		93 U
	Aroclor-1232		46 U
53469-21-9-	Aroclor-1242		46 U
	Aroclor-1248		46 U
	Aroclor-1254		46 U
	Aroclor-1260		46 U
i			ii

PESTICIDE ORGANICS ANALYSIS DATA SHEET

CHY11DL

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

SONC

Matrix: (soil/water)SOIL

Lab Sample ID: 477472 D20

Sample wt/vol:

30.40(g/m1)G

Lab File ID:

% Moisture: 29 decanted: (Y/N)N

Date Received: 01/29/92

Extraction: (SepF/Cont/Sonc)

Date Extracted: 02/03/92

Concentrated Extract Volume: 5000(uL)

Date Analyzed: <u>02/13/92</u>

Injection Volume: 2.0(uL)

Dilution Factor: 2

GPC Cleanup: (Y/N)Y

CAS NO.

рН:<u>6.3</u>

COMPOUND

Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

0

319-84-6alpha-BHC	4.7 U
319-85-7beta-BHC	4 . 7 U
319-86-8delta-BHC	1.5 (JPD
58-89-9gamma-BHC (Lindane)	31) PD
76-44-8Heptachlor	4.7 10
309-00-2Aldrin	3.7 (JPD
309-00-2Aldrin	1.7 JPD
959-98-8Endosulfan I	4.7 U
	9.2 0
72-55-94,4'-DDE	
72-20-8Endrin	3.91JPD
33213-65-9Endosulfan II	9.2 0
72-54-84,4'-DDD	1.8 JPD
1031-07-8Endosulfan sulfate	9.210
50-29-34,4'-DDT	9.2 1 0
72-43-5Methoxychlor	47 0
53494-70-5Endrin ketone	9.210
7421-93-4Endrin aldehyde	9.210
5103-71-9alpha-Chlordane	4.4 JPD
5103-74-2gamma-Chlordane	2.7 JD
8001-35-2Toxaphene	470 U
12674-11-2Aroclor-1016	92 U
11104-28-2Aroclor-1221	190 U
11141-16-5Aroclor-1232	92 U
53469-21-9Aroclor-1242	92 U
12672-29-6Aroclor-1248	92 (U
11097-69-1Aroclor-1254	92 0
11096-82-5Aroclor-1260	92 0

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1. 4.

	`	CHY12
Lab Name: COMPUCHEM.RTP	Contract: <u>68D10083</u>	

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477476

Sample wt/vol: $\underline{5.0}$ (g/mL) \underline{G} Lab File ID: $\underline{GH077476C18}$

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: not dec. __55
Date Analyzed: 01/31/92

GC Column: DB624 ID: 0.530 (mm) Dilution Factor: 1.0

Soil Extract Volume: _____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

4-87-3Chloromethane	22	ซ
4-83-9Bromomethane	22	U
75-01-4Vinyl Chloride	22	U
5-00-3Chloroethane	22	U
5-09-2Methylene Chloride	88	В
57-64-1Acetone	96	В
5-15-0Carbon Disulfide	22	U
5-35-41,1-Dichloroethene	22	U
/5-34-31,1-Dichloroethane	22	U
640-59-01,2-Dichloroethene (total)	22	U
	22	ט
07-66-3Chloroform 07-06-21,2-Dichloroethane	22	U
8-93-32-Butanone	22	ט
1-55-61,1,1-Trichloroethane	22	U
66-23-5Carbon Tetrachloride	22	บ
5-27-4Bromodichloromethane	22	U
/8-87-51,2-Dichloropropane	22	U
10061-01-5cis-1,3-Dichloropropene '	22	U
79-01-6Trichloroethene	22	U
24-48-1Dibromochloromethane	22	U
/9-00-51.1.2-Trichloroethane	22	ט
1-43-2Benzene	22	บ
.0061-02-6Trans-1,3-Dichloropropene	22	ľΰ
75-25-2Bromoform	22	U
.08-10-14-Methyl-2-Pentanone	22	שׁ
91-78-62-Hexanone	22	ប
.27-18-4Tetrachloroethene	22	ប
9-34-51,1,2,2-Tetrachloroethane	22	ប
.08-88-3Toluene	22	ប
.08-90-7Chlorobenzene	22	ប
.00-41-4Ethylbenzene	22	ប
.00-42-5Styrene	22	ับ
330-20-7Xylene (total)	22	ប

CHY12

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477476

Sample wt/vol: 30.5 (g/mL) G Lab File ID: GR077476C21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: ____55 decanted: (Y/N) N ____ Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/10/92

Injection Volume: 2.0(uL) Dilution Factor: 1.0

pH: _6.4

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG O

108-95-2----Phenol 75 J 111-44-4----bis(2-Chloroethyl)Ether 720 U 95-57-8----2-Chlorophenol 720 U 541-73-1----1,3-Dichlorobenzene_ 720 ប 106-46-7----1,4-Dichlorobenzene_ U 720 95-50-1-----1,2-Dichlorobenzene_ 720 U 95-48-7----2-Methylphenol 720 U 108-60-1----2,2'-Oxybis(1-Chloropropane) 720 U 106-44-5----4-Methylphenol 95 J 621-64-7----N-Nitroso-Di-n-Propylamine 720 U 67-72-1-----Hexachloroethane 720 IJ 98-95-3----Nitrobenzene 720 U 78-59-1-----Isophorone 720 U 88-75-5----2-Nitrophenol 720 U 105-67-9----2,4-Dimethylphenol 720 U 111-91-1----bis(2-Chloroethoxy)Methane U 720 120-83-2----2,4-Dichlorophenol 720 U 120-82-1----1,2,4-Trichlorobenzene_ 720 U 91-20-3-----Naphthalene 720 Ŭ 106-47-8----4-Chloroaniline 720 U 87-68-3-----Hexachlorobutadiene 720 U 59-50-7----4-Chloro-3-Methylphenol_ 720 U 91-57-6----2-Methylnaphthalene 720 Ŭ 77-47-4-----Hexachlorocyclopentadiene 720 บ 88-06-2----2,4,6-Trichlorophenol_ 720 U 95-95-4-----2,4,5-Trichlorophenol 1700 U 91-58-7----2-Chloronaphthalene 720 U 88-74-4----2-Nitroaniline 1700 U 131-11-3-----Dimethyl Phthalate 720 U 208-96-8-----Acenaphthylene 720 U 606-20-2----2,6-Dinitrotoluene 720 U 99-09-2-----3-Nitroaniline_ 1700 U 83-32-9-----Acenaphthene 720 U

FORM I SV-1

GPC Cleanup:

(Y/N) <u>Y</u>___

3/90

C'RIGINA

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: COMPUCHEM.RTP Contract: 68D10083

ab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477476

Sample wt/vol: 30.5 (g/mL) G Lab File ID: GR077476C21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: ___55 decanted: (Y/N) N Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/10/92

Injection Volume: 2.0(uL) Dilution Factor: 1.0

Cleanup: (Y/N) <u>Y</u> pH: <u>6.4</u>

CAS NO. COMPOUND CONCENTRATION UNITS:
(ug/L or ug/Kg) UG/KG Q

	1	
51-28-52,4-Dinitrophenol	1700	บ
100-02-74-Nitrophenol	1700	ប
132-64-9Dibenzofuran	720	ប
121-14-22,4-Dinitrotoluene	720	U
84-66-2Diethylphthalate	720	ប
7005-72-34-Chlorophenyl-phenylether	720	ט
	720	ט
86-73-7Fluorene 100-01-64-Nitroaniline	1700	ប
534-52-14,6-Dinitro-2-Methylphenol	1700	ט
86-30-6N-Nitrosodiphenylamine (1)	720	ש
101-55-34-Bromophenyl-phenylether	720	ט
118-74-1Hexachlorobenzene	720	ש
87-86-5Pentachlorophenol	1700	U
85-01-8Phenanthrene	150	J
120-12-7Anthracene	720	ט
86-74-8Carbazole	720	lυ
84-74-2Di-n-Butylphthalate	79	J
206-44-0Fluoranthene	360	J
129-00-0Pyrene	320	J
85-68-7Butylbenzylphthalate	76	J
91-94-13,3'-Dichlorobenzidine	720	ט
56-55-3Benzo(a)Anthracene	210	J
218-01-9Chrysene	210	J
218-01-9Chrysene	350	J
117-84-0Di-n-Octyl Phthalate	720	U
205-99-2Benzo(b) Fluoranthene	440	JX
207-08-9Benzo(k)Fluoranthene	440	JX
50-32-8Benzo(a) Pyrene	180	J
193-39-5Indeno(1,2,3-cd)Pyrene	88	J
53-70-3Dibenz(a,h)Anthracene	720	U
191-24-2Benzo(q,h,i) Perylene	` 87	J

(1) - Cannot be separated from Diphenylamine

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

CHY12

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477476

Sample wt/vol: 30.5 (g/mL) G Lab File ID: GR077476C21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: ___55 decanted: (Y/N) N Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/10/92

Injection Volume: _____2.0(uL) Dilution Factor: ____1.0

GPC Cleanup: $(Y/N) \underline{Y}$ pH: <u>6.4</u>

Number TICs found: <u>22</u> CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN	4.52	1300	J
2.	UNKNOWN	4.73	1200	J
3.	ALDOL	4.87	1100	ABJ
4.	ALDOL	5.00	1200	AJ
5.	UNKNOWN	5.32	870	J
6.	UNKNOWN	5.53	440	J
7.	UNKNOWN	5.97	1500	J
8.	UNKNOWN	7.60	510	J
9.	UNKNOWN	8.28	290	J
10. 70-55-3	BENZENESULFONAMIDE, 4-METHYL	10.80	360	JN
11.	UNKNOWN	12.35	360	J
12.	UNKNOWN	12.39	510	J
13. 57-10-3	HEXADECANOIC ACID	12.44	730	JN
14.	UNKNOWN	13.44	220	J J
15.	UNKNOWN HYDROCARBON	14.22	290	J
16.	UNKNOWN HYDROCARBON	15.17	510	J
17.	UNKNOWN	15.64	220	J
18.	UNKNOWN	16.10	730	J
19.	UNKNOWN	16.55	730	J
20.	UNKNOWN	16.85	660	J
21.	UNKNOWN	17.22	3000	J
22.	UNKNOWN	18.85	2200	J
		<u></u>		

Q

CHY12

Lab Name: COMPUCHEM, RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water)SOIL Lab Sample ID: 477476

Sample wt/vol: 30.30(g/ml)G Lab File ID:

% Moisture: 55 decanted: (Y/N)N Date Received: 01/29/92

Extraction: (SepF/Cont/Sonc) SONC Date Extracted: 02/03/92

Concentrated Extract Volume: 5000(uL) Date Analyzed: 02/07/92

Injection Volume: 2.0(uL) Dilution Factor: 1

GPC Cleanup: (Y/N)Y pH: 6.4 Sulfur Cleanup: (Y/N)N

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg)UG/KG

38 JP
3.7 U
1.7 j U
1.7 U
13 JPB
.1 JP
3.7 บ
1.7 U
' . 3 i U
.4 JP
'.6
.5 JP
.8 J
.7 JP
.2 JP
15 JPB
'.3 U
.6 JP
.1 P
.5 JP
170 U
73 U
.50 U
73 U
73 U
73 U
73 U
73 U

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: COMPUCHEM.RTP Contract	t: 68D10083 CHY13
Lab Code: COMPU Case No.: 17744 SAS No.	.: 6579HO SDG No.: CHY11
Matrix: (soil/water) SOIL	Lab Sample ID: 477483
Sample wt/vol:	Lab File ID: GH077483A18
Level: (low/med) LOW	Date Received: 01/29/92
% Moisture: not dec36	Date Analyzed: 01/31/92
GC Column: DB624 ID: 0.530 (mm)	Dilution Factor:1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume:(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NO.	COMPOUND	(ug/L or	ug/Kg)	UG/KG	Q
74-87-3	Chloromethane_			16	U
74-83-9	Bromomethane			16	∖ับ
75-01-4	Vinyl Chloride_			16	שׁ
75-00-3	Chloroethane			16	U
75-09-2	Methylene Chlor	ide		67	В
57-64-1	Acetone			54	В
75-15-0	Carbon Disulfid	e		16	ឋ
75-35-4	1,1-Dichloroeth	ene		16	U
75-34-3	1,1-Dichloroeth	ane	1	16	ប
540-59-0	1,2-Dichloroeth	ene (total)		16	[ប
	Chloroform			16	ט
	1,2-Dichloroeth	ane		16	ט
78-93-3	2-Butanone			16	שׁ
71-55-6	1,1,1-Trichlore	ethane		16	ַט
56-23-5	Carbon Tetrachl	oride		16	U
75-27-4	Bromodichlorome	thane		16	ט
78-87-5- -	1,2-Dichloropro	pane	\	16	ឋ
10061-01-5-	cis-1,3-Dichlor	opropene		16	ប
79-01-6	Trichloroethene			16) U
124-48-1	Dibromochlorome	thane		16	Ū
79-00-5	1,1,2-Trichloro	ethane	I	16	U
71-43-2	Benzene			16	ט
10061-02-6-	Trans-1,3-Dichl	oropropene		16	ט
75-25-2	Bromoform			16	ן ט
108-10-1	4-Methyl-2-Pent	anone		16	U
591-78-6	2-Hexanone			16	ט
127-18-4	Tetrachloroethe	ne		16	טן
79-34-5~	1,1,2,2-Tetrach	loroethane_	{	16	ן ט
108-88-3	Toluene			16	ט
L08-90-7	Chlorobenzene			16	U
100-41-4	Ethvlbenzene		İ	16	ט
100-42-5	Styrene			16	טן
L330-20-7 -	Xylene (total)			16	ט

____ Contract: 68D10083

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

CHY13

CG MAI

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477483

Sample wt/vol: 30.3 (g/mL) G Lab File ID: G2J77483A21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: 36 decanted: (Y/N) N Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/12/92

Injection Volume: 2.0(uL) Dilution Factor: 1.0

PC Cleanup: (Y/N) Y pH: 6.5

Lab Name: COMPUCHEM.RTP

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

		<u> </u>
108-95-2Phenol	510	ט
111-44-4bis(2-Chloroethyl)Ether_	510	ט
95-57-82-Chlorophenol	T 510	ប
541-73-11,3-Dichlorobenzene	510	ប
106-46-71,4-Dichlorobenzene	510	ប
95-50-11,2-Dichlorobenzene	510	ប
		U
95-48-72-Methylphenol_ 108-60-12,2'-Oxybis(1-Chloropropane)_	510	ប
	510	ט
106-44-54-Methylphenol_ 621-64-7N-Nitroso-Di-n-Propylamine	510	lυ
67-72-1Hexachloroethane	510	ប
98-95-3Nitrobenzene	510	ן ט
78-59-1Isophorone	510	ľΰ
88-75-52-Nitrophenol	510	lυ
105-67-92,4-Dimethylphenol	510	U
111-91-1bis(2-Chloroethoxy)Methane	510	ប
120-83-22,4-Dichlorophenol	510	ט
120-82-11,2,4-Trichlorobenzene_	510	"
91-20-3Naphthalene	510	Ū
106-47-84-Chloroaniline	510	ប
87-68-3Hexachlorobutadiene	510	[U
87-68-3Hexachlorobutadiene 59-50-74-Chloro-3-Methylphenol	510	ប
91-57-62-Methylnaphthalene	510	ן ט
77-47-4Hexachlorocyclopentadiene	510	ប
88-06-22.4.6-Trichlorophenol	510	U
88-06-22,4,6-Trichlorophenol 95-95-42,4,5-Trichlorophenol	1200	Ū
91-58-72-Chloronaphthalene	510	Ū
88-74-42-Nitroaniline	1200	ָ <u>"</u>
131-11-3Dimethyl Phthalate		ט
208-96-8Acenaphthylene	510	Ū
606-20-22,6-Dinitrotoluene		"
99-09-23-Nitroaniline	1200	ן ט
	510	บ
83-32-9Acenaphthene	_ 510	•

CHY13

Lab Name: COMPUCHEM.RTP _____ Contract: <u>68D10083</u>

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Lab Sample ID: <u>477483</u> Matrix: (soil/water) SOIL

30.3 (g/mL) G Lab File ID: Sample wt/vol: G2J77483A21

Date Received: 01/29/92 Level: (low/med) LOW _

% Moisture: ____36 decanted: (Y/N) N_ Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/12/92

Dilution Factor: _____1.0 Injection Volume: _____2.0(uL)

рн: <u>6.5</u>

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u> Q

51-28-52,4-Dinitrophenol	1200	∖ับ
L00-02-74-Nitrophenol	1200	Ū
132-64-9Dibenzofuran	510	Ųυ
121-14-22,4-Dinitrotoluene	510	ט
24-66-2	76	J
7005-72-34-Chlorophenyl-phenylether	510	ប
36-73-7Fluorene	510	ט
100-01-64-Nitroaniline	1200	ש
534-52-14,6-Dinitro-2-Methylphenol	1200	ט
36-30-6N-Nitrosodiphenylamine (1)	510	ַט
01-55-3	510	ט
118-74-1Hexachlorobenzene	510	U
37-86-5Pentachlorophenol	1200	∖ט
35-01-8Phenanthrene	72	J
120-12-7Anthracene	510	ען
86-74-8Carbazole	510	Ū
34-74-2Di-n-Butylphthalate	510	ט
206-44-0Fluoranthene	150	J
129-00-0Pyrene	130	J
35-68-7Butylbenzylphthalate	510	ט
31-94-13,3'-Dichlorobenzidine	510	ט
56-55-3Benzo(a)Anthracene	100	J
12-01-QChrygana	100	J
117-81-7bis(2-Ethylhexyl)Phthalate	53	J
117-84-0Di-n-Octyl Phthalate	510	ט
205-99-2Benzo(b)Fluoranthene	180	JX
207-08-9Benzo(k)Fluoranthene	180	JX
50-32-8Benzo(a)Pvrene	110	J
193-39-5Indeno(1,2,3-cd)Pyrene	86	J
53-70-3Dibenz(a,h)Anthracene	510	U
191-24-2Benzo(g,h,i) Perylene	91	J

(1) - Cannot be separated from Diphenylamine

GPC Cleanup: (Y/N) Y

1F

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

				CHY13
Lab Name:	COMPUCHEM, RTP	Contract:	68D10083	

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477483

Sample wt/vol: 30.3 (g/mL) G Lab File ID: G2J77483A21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: 36 decanted: (Y/N) N Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/12/92

Injection Volume: 2.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y pH: 6.5

Number TICs found: 27 CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN	4.40	310	J
2.	UNKNOWN	4.62	1500	J
3.	ALDOL	4.77	1400	ABJ
4.	ALDOL	4.88	210	AJ
5.	UNKNOWN	5.87	1900	J
6.	BLANK CONTAMINANT	9.12	210	BJ
7.	UNKNOWN CARBOXYLIC ACID	9.84	210	J
8.	BLANK CONTAMINANT	10.24	360	BJ
9.	BLANK CONTAMINANT	11.20	570	BJ
10.	UNKNOWN SILOXANE	12.05	570	J
11.	UNKNOWN	12.59	150	J
12.	UNKNOWN SILOXANE	12.84	520	J
13.	BLANK CONTAMINANT	13.54	1000	BJ
14.	UNKNOWN SILOXANE	14.20	670	J
15.	LABORATORY ARTIFACT	14.54	210	BJ
16.	UNKNOWN SILOXANE	14.82	620	J
17.	UNKNOWN	15.07	310	J
18.	UNKNOWN SILOXANE	15.44	520	J
19.	UNKNOWN SILOXANE	16.04	820	J
20.	UNKNOWN	16.42	460	J
21.	UNKNOWN	16.47	260	J
22.	UNKNOWN	16.57	210	J
23.	UNKNOWN	16.72	930	J
24.	UNKNOWN	17.07	520	J
25.	UNKNOWN	17.15	770	J
26.	UNKNOWN	23.39	570	J
27.	UNKNOWN .	23.45	310	J

CHY13

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water)SOIL

Lab Sample ID: <u>477483</u>

Sample wt/vol:

Lab Code: COMPU

30.20(g/m1)G

Lab File ID:

CONCENTRATION UNITS:

% Moisture: 36 decanted: (Y/N)N

Date Received: 01/29/92

Extraction: (SepF/Cont/Sonc)

SONC

Date Extracted: 02/03/92

Concentrated Extract Volume: 5000(uL)

Date Analyzed: 02/07/92

Injection Volume: 2.0(uL)

Dilution Factor: 1

GPC Cleanup: (Y/N)Y

pH:<u>6.5</u>

Sulfur Cleanup: (Y/N) N

COMPOUND (ug/L or ug/Kg)UG/KG CAS NO. Q <u>2.6|U</u> 319-84-6-----alpha-BHC_ 319-85-7----beta-BHC_ 2,6 I U 319-86-8-----delta-BHC <u>2.6|U</u> 58-89-9-----gamma-BHC (Lindane)____ <u>2.6|U</u> 0.14|JPB 76-44-8------Heptachlor_ 309-00-2-----Aldrin <u>0.33|J</u> 1024-57-3-----Heptachlor epoxide___ <u>0.24|JP</u> 959-98-8-----Endosulfan I____ 2.6|U 60-57-1-----Dieldrin <u>0.46|JP</u> 72-55-9------4,4'-DDE_ <u>5.1|U</u> 72-20-8-----Endrin_ <u>1.6|JP</u> 33213-65-9----Endosulfan II <u>0.32|JP</u> 72-54-8-----4,4'-DDD_ <u>5.1|U</u> 1031-07-8-----Endosulfan sulfate <u>5.1|U</u> 50-29-3-----4,4'-DDT <u>5.1|U</u> 2.7|JPB 72-43-5-----Methoxychlor_ 53494-70-5----Endrin ketone_ 0.65|JP 7421-93-4----Endrin aldehyde_ <u>5.1|U</u> 5103-71-9----alpha-Chlordane_ 0.26 JP 5103-74-2----gamma-Chlordane_ <u>0.13|J</u> 8001-35-2----Toxaphene <u> 260 | U</u> 12674-11-2----Aroclor-1016 51 | U 11104-28-2----Aroclor-1221 1<u>00|U</u> 11141-16-5----Aroclor-1232 <u>51|U</u> 53469-21-9----Aroclor-1242 <u>51 | U</u> 12672-29-6----Aroclor-1248 <u>51 | U</u> 11097-69-1----Aroclor-1254 <u>51 | U</u> 11096-82-5----Aroclor-1260_ 51 I U

VOLATILE ORGANICS ANALYSIS DATA SHEET

Ang. EPA SAMPLE NO.

Lab Name: COMPUCHEM.RTP	Contract: <u>68D10083</u>	CHY14
Lab Code: COMPU Case No.: 17744	SAS No.: 6579HO SDG 1	No.: <u>CHY11</u>
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID:	477484
Sample wt/vol:	_ Lab File ID:	GR077484A18
Level: (low/med) <u>LOW</u>	Date Received:	01/29/92
% Moisture: not dec56	Date Analyzed:	02/05/92
GC Column: <u>DB624</u> ID: <u>0.530</u> (mm)	Dilution Factor:	1.0
Soil Extract Volume: (uL)	Soil Aliquot Vol	lume:(uL)

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

		T
74-87-3Chloromethane	23	ן ט
74-83-9Bromomethane	23	ט
75-01-4Vinyl Chloride	23	ע
75-00-3Chloroethane	23	U
75-09-2Methylene Chloride	54	В
57-64-1Acetone	39	В
75-15-0Carbon Disulfide	23	U
75-35-41,1-Dichloroethene	23	U
75-34-31,1-Dichloroethane	23	U
540-59-01,2-Dichloroethene (total)	23	U
67-66-3Chloroform	23	שׁ
107-06-21,2-Dichloroethane	23	ן ט
78-93-32-Butanone	23	שׁ
71-55-61,1,1-Trichloroethane	23	שׁ
56-23-5Carbon Tetrachloride	23	U
75-27-4Bromodichloromethane	23	U
78-87-51,2-Dichloropropane	23	U
10061-01-5cis-1,3-Dichloropropene	23	Ū
79-01-6Trichloroethene	23	บ
124-48-1Dibromochloromethane	23	ָ [±]
79-00-51,1,2-Trichloroethane	23	Ü
71-43-2Benzene	23	Ū
10061-02-6Trans-1,3-Dichloropropene	23	บั
75-25-2Bromoform	23	u u
108-10-14-Methyl-2-Pentanone	23	Ū
591-78-62-Hexanone	23	Ū
127-18-4Tetrachloroethene	23	Ü
79-34-51,1,2,2-Tetrachloroethane	23	U
108-88-3Toluene	23	Ü
108-90-7Chlorobenzene	23	Ϊ́σ
100-41-4Ethylbenzene	23	บ็
100-42-5Styrene	23	บ
1330-20-7Xylene (total)	23	บ็
1330-50-1	23	١
	J	

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET CHY14 -Lab Name: COMPUCHEM.RTP Contract: <u>68D10083</u> Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11 Lab Code: COMPU_ Matrix: (soil/water) <u>SOIL</u> Lab Sample ID: 477484 Sample wt/vol: Lab File ID: 30.4 (g/mL) G GR077484C21 Level: (low/med) LOW Date Received: 01/29/92 % Moisture: <u>56</u> decanted: (Y/N) N_ Date Extracted: 02/04/92 Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/11/92 Dilution Factor: ____1.0 Injection Volume: _____2.0(uL) GPC Cleanup: (Y/N) Y_{-} pH: <u>6.2</u> CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u> Q 108-95-2----Phenol 740 U 111-44-4-----bis(2-Chloroethyl)Ether_ 740 U 95-57-8----2-Chlorophenol 740 U 541-73-1----1,3-Dichlorobenzene U 740 106-46-7----1,4-Dichlorobenzene U 740 95-50-1-----1,2-Dichlorobenzene 740 U 95-48-7----2-Methylphenol 740 U 108-60-1----2,2'-Oxybis(1-Chloropropane) Ŭ --740 106-44-5-----4-Methylphenol 740 U 621-64-7----N-Nitroso-Di-n-Propylamine 740 U 67-72-1-----Hexachloroethane 740 U 98-95-3-----Nitrobenzene 740 U 78-59-1-----Isophorone 740 IJ 88-75-5----2-Nitrophenol 740 U 105-67-9----2,4-Dimethylphenol 740 U 111-91-1----bis(2-Chloroethoxy) Methane 740 U .. 120-83-2----2, 4=Dichlorophenol 740 U 120-82-1----1,2,4-Trichlorobenzene_ 740 U 91-20-3----Naphthalene 740 U 106-47-8----4-Chloroaniline U 740 87-68-3-----Hexachlorobutadiene 740 U

FORM I SV-1

59-50-7-----4-Chloro-3-Methylphenol_

77-47-4-----Hexachlorocyclopentadiene

91-57-6----2-Methylnaphthalene

88-06-2----2,4,6-Trichlorophenol

95-95-4-----2,4,5-Trichlorophenol_

91-58-7----2-Chloronaphthalene_

131-11-3-----Dimethyl Phthalate_

606-20-2----2,6-Dinitrotoluene

88-74-4----2-Nitroaniline

208-96-8-----Acenaphthylene

99-09-2----3-Nitroaniline

83-32-9-----Acenaphthene

3/90

740

740

740

740

740

740

1800

740

740_

1800

1800

740 -

U

U

U

U

U

U

U

U

U

Ū

U

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CHY14

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477484

Sample wt/vol: 30.4 (g/mL) G Lab File ID: GR077484C21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: ____56 decanted: (Y/N) N___ Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/11/92

Injection Volume: 2.0(uL) Dilution Factor: 1.0

PC Cleanup: (Y/N) Y pH: 6.2

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG Q

51-28-52,4-Dinitrophenol	1800	U
100-02-74-Nitrophenol	1800	ប
132-64-9Dibenzofuran	740	ש
121-14-22,4-Dinitrotoluene	740	ט
84-66-2Diethylphthalate	740	U
7005-72-34-Chlorophenyl-phenylether	740	ט
86-73-7Fluorene	740	U
100-01-64-Nitroaniline	1800	U
534-52-14,6-Dinitro-2-Methylphenol	1800	ט
86-30-6N-Nitrosodiphenylamine (1)	740	U
101-55-34-Bromophenyl-phenylether	740	U
118-74-1Hexachlorobenzene	740	U
87-86-5Pentachlorophenol	1800	U
35-01-8Phenanthrene	330	J
120-12-7Anthracene	7 7	J
86-74-8Carbazole	740	ש
84-74-2Di-n-Butylphthalate	740	ש
206-44-0Fluoranthene	790	
129-00-0Pyrene	450	J
35-68-7Butylbenzylphthalate	130	J
91-94-13,3'-Dichlorobenzidine	740	U
56-55-3Benzo(a)Anthracene	420	J
218-01-9Chrysene	340	J
117-81-7bis(2-Ethylhexyl)Phthalate	350	J
117-84-0Di-n-Octyl Phthalate	740	U
205-99-2Benzo(b)Fluoranthene	610	JX
207-08-9Benzo(k)Fluoranthene		JX
50-32-8Benzo(a) Pyrene	360	J
193-39-5Indeno(1,2,3-cd)Pyrene	220	J
53-70-3Dibenz(a,h)Anthracene	78	J
191-24-2Benzo(g,h,i)Perylene	190	J

^{(1) -} Cannot be separated from Diphenylamine

Burn At Sect.

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

CHY14

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL

Lab Sample ID: <u>477484</u>

Sample wt/vol: 30.4 (g/mL) G

Lab File ID: GR077484C21

Level: (low/med) LOW

Date Received: 01/29/92

% Moisture: ___56

decanted: (Y/N) N__

Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL)

Date Analyzed: 02/11/92

Injection Volume: _____2.0(uL)

Dilution Factor: ____1.0

GPC Cleanup: (Y/N) Y pH: <u>6.2</u>

Number TICs found: 26

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN	4.50	370	J
2.	TETRACHLOROETHANE	4.62	220	J
3.	UNKNOWN	4.72	1400	J
4.	ALDOL	4.85	1100	ABJ
5.	ALDOL	4.97	670	ΑJ
6. 100-52-7	BENZALDEHYDE	5.07	150	JN
7.	ALDOL	5.47	150	ĀJ
8.	UNKNOWN	5.95	2500	J
9.	UNKNOWN	7.10	300	J
10.	UNKNOWN	7.38	370	J
11.	BLANK CONTAMINANT	7.93	220	BJ
12.	BLANK CONTAMINANT	9.20	300	BJ
13.	UNKNOWN	12.32	220	J
14.	UNKNOWN CARBOXYLIC ACID	12.40	450	J
15.	UNKNOWN	13.42	220	J
16.	LABORATORY ARTIFACT	14.64	150	BJ
17.	UNKNOWN HYDROCARBON	15.15	1600	J
18.	UNKNOWN HYDROCARBON	16.09	2500	J
19.	UNKNOWN	16.54	670	J
20.	UNKNOWN	16.59	820	J
21.	UNKNOWN	16.84	1400	J
22.	UNKNOWN	17.24	13000	J
23.	BENZOFLUORANTHENE	17.37	600	J
24.	UNKNOWN	18.32	1700	∫ J
25.	UNKNOWN	18.90	6800	J
26.	UNKNOWN	21.54	3400	J

CHY14

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL

Lab Sample ID: 477484

Sample wt/vol:

30.10(g/ml)G

Lab File ID:

% Moisture: 56 decanted: (Y/N)N

Date Received: 01/29/92

Extraction: (SepF/Cont/Sonc)

SONC

Date Extracted: 02/03/92

Concentrated Extract Volume: 5000(uL)

Date Analyzed: 02/07/92

Injection Volume: 2.0(uL)

Dilution Factor: 1

GPC Cleanup: (Y/N)Y

pH:<u>6.2</u>

Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS: COMPOUND CAS NO. (ug/L or ug/Kg)UG/KG Q

	319-84-6alpha-BHC	0.361	JP.
ί	319-85-7beta-BHC	3.9	
i	319-86-8delta-BHC	3.9	
ŀ	58-89-9gamma-BHC (Lindane)		E
ŀ	76-44-8Heptachlor		
i	309-00-2Aldrin	4.3	
! 	1024-57-3Heptachlor epoxide	5.61	
ŀ	959-98-8Endosulfan I	3.9	$\overline{}$
i	60-57-1Dieldrin	7.6	
ŀ	72-55-94,4'-DDE		
ŀ	72-20-8Endrin	4,4	
ì	33213-65-9Endosulfan II	7.6	
i	72-54-84,4'-DDD	4.3	
i	1031-07-8Endosulfan sulfate	0.69	
ŀ		1.5	
1	72-43-5Methoxychlor		
i	53494-70-5Endrin ketone	4.61	
i	7421-93-4Endrin aldehyde	3.1	
i	5103-71-9alpha-Chlordane		
ľ	5103-74-2gamma-Chlordane	3.3	
ì	8001-35-2Toxaphene	3901	
1	12674-11-2Aroclor-1016		Ü
ŀ	11104-28-2Aroclor-1221	160	
ĺ	11141-16-5Aroclor-1232	761	
l	53469-21-9Aroclor-1242	76	
i	12672-29-6Aroclor-1248	761	
i	11097-69-1Aroclor-1254	761	•
i	11096-82-5Aroclor-1260	76.1	
i			

CHY14DL

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HQ SDG No.: CHY11

Matrix: (soil/water)SOIL

Lab Sample ID: <u>477484 D20</u>

Sample wt/vol:

30.10(g/ml)G

Lab File ID:

CONCENTRATION UNITS:

% Moisture: 56 decanted: (Y/N)N

Date Received: <u>01/29/92</u>

Extraction: (SepF/Cont/Sonc)

SONC

Date Extracted: 02/03/92

Concentrated Extract Volume: 5000(uL)

Date Analyzed: <u>02/13/92</u>

Injection Volume: 2.0(uL)

Dilution Factor: 2

GPC Cleanup: (Y/N)Y

pH:<u>6.2</u>

Sulfur Cleanup: (Y/N) N

CAS NO.	COMPOUND	(ug/L or ug/Kg)UG/KG		Q
319-84-6	alpha-BHC		7.9	U
319-85-7	beta-BHC		7.9	U
319-86-8	delta-BHC	1	5.5	JPD
58-89-9	gamma-BHC (Linda	ine)	34	PD
76-44-8	Heptachlor_		2.8	JPBD
309-00-2	Aldrin	de	3.2	JPD
1024-57-3	Heptachlor epoxi	.dei	1.9	JPD
959-98-8	Endosulfan I		14	PD
60-57-1	Dieldrin		3.3	JPD
72-55-9	4,4'-DDE		15	U
72-20-8	Endrin		4.5	I.JPD
33213-65-9~-	Endosulfan II		15	ΙŪ
72-54-8	4,4'-DDD		3.8	JPD
1031-07-8	Endosulfan sulfa	ite	15	U
50-29-3	4,4'-DDT		1.8	JPD
72-43-5	Methoxychlor		79	U
53494-70-5	Endrin ketone		15	<u></u>
7421-93-4	Endrin aldehyde		2.7	JPD
5103-71-9	alpha-Chlordane		7.9	U
5103-74-2	gamma-Chlordane		1.1	JPD
8001-35-2	Toxaphene		790	บ
12674-11-2	Aroclor-1016		150	U
11104-28-2	Aroclor-1221		310	Ü
11141-16-5	Aroclor-1232		150	Ū
53469-21-9	Aroclor-1242		150	Ū
12672-29-6	Aroclor-1248		150	Ū
11097-69-1	Aroclor-1254		150	Ū
11096-82-5	Aroclor-1260		150	Ū

1**A** VOLATILE ORGANICS ANALYSIS DATA SHEET

COMPOUND

EPA SAMPLE NO.

					CHY15
Lab	Name:	COMPUCHEM, RTP	Contract:	68D10083	

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477485

Sample wt/vol: <u>5.0</u> (g/mL) <u>G</u> Lab File ID: GH077485B18

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: not dec. __19 Date Analyzed: 01/31/92

GC Column: DB624 ID: 0.530 (mm) Dilution Factor: _____1.0

Soil Extract Volume: _____ (uL) Soil Aliquot Volume: ____(uL)

> CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

74-87-3	Chloromethane	12	טן
74-83-9	Bromomethane	12	U
75-01-4	Vinyl Chloride	12	ן ט
75-00-3	Chloroethane	12	ט
75-09-2- -	Methylene Chloride	49	В
57-64-1	Acetone	61	В
75-15-0	Carbon Disulfide	12	U
75-35-4	1,1-Dichloroethene	12	ַ ט
75-34-3	1,1-Dichloroethane	12	ש
540-59-0	1,2-Dichloroethene (total)	12	\ซ
57-66-3	Chloroform	12	U
107-06-2	1,2-Dichloroethane	12	ן ט
	2-Butanone	12	ש
71-55 - 6 -	1,1,1-Trichloroethane	12	ן ט
56-23-5	Carbon Tetrachloride	12	ט
75-27-4	Bromodichloromethane	12	ע
78-87-5	1,2-Dichloropropane	12	U
L0061-01-5	cis-1,3-Dichloropropene	12	ט
79-01-6	Trichloroethene	12	ប
	Dibromochloromethane	12	ט
	1,1,2-Trichloroethane	12	บ
71-43-2	Benzene	12	Ū
L0061-02-6	Trans-1,3-Dichloropropene	12	\ U
	Bromoform	12	ן ט
L08-10-1	4-Methyl-2-Pentanone	12	שׁ
	2-Hexanone	12	U
	Tetrachloroethene	12	ש
	1,1,2,2-Tetrachloroethane	12	\ប
	Toluene	12	ט
L08-90-7	Chlorobenzene	12	U
L00-41-4	Ethylbenzene	12	U
L00-42-5	Styrene	12	ע
1330-20 - 7	Xylene (total)	12	ש

CAS NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CHY15

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL

Lab Sample ID: 477485

Sample wt/vol: 30.5 (g/mL) G Lab File ID: GRD77485A21

Level: (low/med) LOW

Date Received: 01/29/92

% Moisture: ____19 decanted: (Y/N) N___ Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL)

Date Analyzed: 02/12/92

Injection Volume: 2.0(uL)

Dilution Factor: 25.0

GPC Cleanup: $(Y/N) \underline{Y}$ pH: $\underline{6.7}$

A HE WALL 1.1

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

	· · · · · · · · · · · · · · · · · · ·	T
108-95-2Phenol	10000	U
111-44-4bis(2-Chloroethyl)Ether	10000	บ
95-57-82-Chlorophenol	10000	U
541-73-11,3-Dichlorobenzene	10000	U
106-46-71,4-Dichlorobenzene	10000	ט
95-50-11,2-Dichlorobenzene	10000	U
	10000	U
95-48-72-Methylphenol 108-60-12,2'-Oxybis(1-Chloropropane)	10000	U
106-44-54-Methylphenol	10000	ប
621-64-7N-Nitroso-Di-n-Propylamine	10000	ប
67-72-1Hexachloroethane	10000	ប
98-95-3Nitrobenzene	10000	U
78-59-1Isophorone	10000	U
88-75-52-Nitrophenol	10000	lσ
105-67-92.4-Dimethylphenol	10000	U
111-91-1bis(2-Chloroethoxy)Methane	10000	U
120-83-22,4-Dichlorophenol	10000	U
120-82-11,2,4-Trichlorobenzene	2300	J
91-20-3Naphthalene	10000	ט
106-47-84-Chloroaniline	10000	ט
87-68-3Hexachlorobutadiene	10000	ប
59-50-74-Chloro-3-Methylphenol	10000	ប
91-57-62-Methylnaphthalene	10000	U
77-47-4Hexachlorocyclopentadiene	10000	U
88-06-22,4,6-Trichlorophenol	10000	Ū
95-95-42,4,5-Trichlorophenol	24000	Ü
91-58-72-Chloronaphthalene	10000	lΰ
88-74-42-Nitroaniline	24000	U
131-11-3Dimethyl Phthalate	10000	ับ
208-96-8Acenaphthylene	10000	Ū
606-20-22,6-Dinitrotoluene	10000	U
99-09-23-Nitroaniline	24000	ט
83-32-9Acenaphthene	10000	Ū

FORM I SV-1

SAMPLE DATA PACKAGE

17744 CHY 11

714

3/90

1 747

CHY15

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477485

Sample wt/vol: 30.5 (g/mL) G Lab File ID: GRD77485A21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: ____19 decanted: (Y/N) N ___ Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/12/92

Injection Volume: 2.0(uL) Dilution Factor: 25.0

'PC Cleanup: (Y/N) Y pH: 6.7

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u> Q

51-28-5----2,4-Dinitrophenol 24000 100-02-7----4-Nitrophenol_ 24000 U 132-64-9-----Dibenzofuran U 10000 121-14-2----2,4-Dinitrotoluene 10000 Ū 84-66-2-----Diethylphthalate U 10000 7005-72-3----4-Chlorophenyl-phenylether 10000 U 86-73-7-----Fluorene U 10000 100-01-6-----4-Nitroaniline 24000 U 534-52-1----4,6-Dinitro-2-Methylphenol U 24000 86-30-6----N-Nitrosodiphenylamine (1) U 10000 101-55-3-----4-Bromophenyl-phenylether___ U 10000 118-74-1-----Hexachlorobenzene_ 10000 U 87-86-5-----Pentachlorophenol 24000 U 85-01-8-----Phenanthrene 2900 J 120-12-7-----Anthracene 10000 U 86-74-8-----Carbazole U 10000 84-74-2-----Di-n-Butylphthalate 10000 U 206-44-0----Fluoranthene J 7100 129-00-0-----Pyrene J 4900 85-68-7-----Butylbenzylphthalate 10000 U 91-94-1----3,3'-Dichlorobenzidine 10000 U 56-55-3----Benzo(a)Anthracene J 3000 218-01-9-----Chrysene 3800 J 117-81-7-----bis(2-Ethylhexyl)Phthalate_ J 1300 117-84-0-----Di-n-Octyl Phthalate U 10000 205-99-2----Benzo(b) Fluoranthene JΧ 8000 207-08-9----Benzo(k)Fluoranthene 8000 JX 50-32-8-----Benzo(a) Pyrene 3700 J 193-39-5----Indeno(1,2,3-cd)Pyrene J 2400 53-70-3-----Dibenz(a,h)Anthracene____ U 10000 191-24-2----Benzo(g,h,i)Perylene 2100 J

(1) - Cannot be separated from Diphenylamine

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

CHY15

Lab Name: COMPUCHEM.RTP Contract: 68D10083

The same of \cdots , $e^{i T_{ik}}$

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL

Lab Sample ID: 477485

Sample wt/vol: 30.5 (g/mL) G

Lab File ID:

GRD77485A21

Level: (low/med) LOW

Date Received: 01/29/92

% Moisture: 19 decanted: (Y/N) N

Date Extracted: 02/04/92

Date Analyzed: 02/12/92

Injection Volume: 2.0(uL)

Dilution Factor: ____25.0

GPC Cleanup: (Y/N) Y pH: 6.7

Concentrated Extract Volume: 500.0 (uL)

Number TICs found: 20

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN	10.87	23000	J
2.	UNKNOWN	11.50	50000	J
3.	UNKNOWN	11.79	22000	lσ l
4.	UNKNOWN	11.95	24000	J
5.	UNKNOWN	11.99	21000	Ј
6.	UNKNOWN	12.05	22000	J
7.	UNKNOWN	12.39	53000	J
8.	UNKNOWN	12.49	29000	Ј Ј
9.	РСВ	13.20	21000	J
10.	PCB	13.47	23000	J
11.	PCB	13.84	29000	J
12.	PCB	13.97	32000	J
13.	PCB	14.10	85000	J
14.	PCB	14.39	100000	J
15.	PCB	14.52	36000	J
16.	PCB	14.67	69000	J
17.	PCB	14.82	38000	J
18.	PCB	15.09	30000	J
19.	PCB	15.37	70000	J
20.	PCB	15.69	23000	J
				<u></u>

PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CHY15

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

SONC

Matrix: (soil/water)SOIL

Lab Sample ID: <u>477485 R1D21</u>

CONCENTRATION UNITS:

Sample wt/vol:

30.00(g/m1)G

Lab File ID: PR077485A22

% Moisture: 19 decanted: (Y/N)N

Date Received: 01/29/92

Extraction: (SepF/Cont/Sonc)

Date Extracted: 02/20/92

Concentrated Extract Volume: 5000(uL)

Date Analyzed: 02/21/92

Injection Volume: 2.0(uL)

Dilution Factor: 20

GPC Cleanup: (Y/N)Y

pH:<u>6.7</u>

Sulfur Cleanup: (Y/N) N

CAS NO.	COMPOUND	(ug/L or ug/Kg) <u>UG/KG</u>	Q
319-84-6	alpha-BHC		11 JP
319-85-7	beta-BHC	i	42 I U
319-86-8	delta-BHC	1	42 I U
58-89-9	gamma-BHC (Linda	ine)	3.4 JP
76-44-8	Heptachlor	i	42 I U
309-00-2	Aldrin	ide	12 JP
1024-57-3	Heptachlor epox:	ide	42 U
959-98-8	Endosulfan I		42 U
60-57-1	Dieldrin		<u> 81 U</u>
72-55-9	4,4'-DDE		<u>81 U</u>
72-20-8	Endrin	i	81 I U
33213-65-9	Endosulfan II	(81 I U
72-54-8	4,4'-DDD		81 I U
1031-07-8	Endosulfan sulfa	ite	81 U
50-29-3	4,4'-DDT		81 U
72-43-5	Methoxychlor		420 U
53494-70-5	Endrin ketone		81 i U
7421-93-4	Endrin aldehyde		81 10
5103-71-9	alpha-Chlordane		421U
5103-74-2	gamma-Chlordane		42 I U
8001-35-2	Toxaphene		4200 IU
12674-11-2	Aroclor-1016		810 IU
11104-28-2	Aroclor-1221		1700 IU
11141-16-5	Aroclor-1232		810 U
53469-21-9	Aroclor-1242		810 j U
12672-29-6	Aroclor-1248		810 U
11097-69-1	Aroclor-1254		810 U
11096-82-5	Aroclor-1260		0000 PCB

PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CHY15DL

Lab Name: COMPUCHEM.RTP

gardi. Sari

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water)SOIL Lab Sample ID: 477485 R1D22

Sample wt/vol: 30.00(g/ml)G Lab File ID: PR077485A22

% Moisture: 19 decanted: (Y/N)N Date Received: 01/29/92

Extraction: (SepF/Cont/Sonc) SONC Date Extracted: 02/20/92

Concentrated Extract Volume: 5000(uL) Date Analyzed: 02/22/92

Injection Volume: 2.0(uL) Dilution Factor: 200

GPC Cleanup: (Y/N)Y pH: 6.7 Sulfur Cleanup: (Y/N)N

		CONCENTRATION UNITS:	
CAS NO.	COMPOUND	(ug/L or ug/Kg) <u>UG/KG</u>	Q
1		l	
319-85-7	beta-BHC		
319-86-8	delta-BHC		120 U 1
58-89-9	gamma-BHC (Lin	dane)	120 U
76-44-8	Heptachlor	ii	120 U
309-00-2	Aldrin		120 U
1024-57-3	Heptachlor epo	xide	120 U
959-98-8	Endosulfan I		120 U
60-57-1	Dieldrin		310 U
72-55-9	4,4'-DDE		310 U
, 72-20-8- -	Endrin		310 U I
33213-65-9	Endosulfan II_		310 U
72-54-8	4,4'-DDD		310 U
1031-07-8	Endosulfan sul	fate	310 U
50-29-3	4,4'-DDT	ii	310 U
72-43-5	Methoxychlor		200 U
53494-70-5	Endrin ketone_		310 U
7421-93-4	Endrin aldehyd	e	310 U
1 5103-71-9	alpha-Chlordan	e	120 Ui
5103-74-2	gamma-Chlordan	ei	120 U
8001-35-2	Toxaphene	420)00 U i
12674-11-2	Aroclor-1016	18:	L001U 1
. 111 <i>04</i> 20.2	%woolow_1001	1 17/	000 Ui
11141-16-5	Aroclor-1232		100 0
			100 U i
12672-29-6	Aroclor-1248	81	1 U 00 i
11097-69-1	Aroclor-1254		.00 U
11096-82-5	Aroclor-1260	3000	00 PCBD
İ			

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

COMPOUND

EPA SAMPLE NO.

Q

			CHY16
Lab Na	me: COMPUCHEM.RTP	Contract: 68D10083	

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477486

Sample wt/vol: 5.0 (g/mL) G Lab File ID: GH077486B18

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: not dec. 62
Date Analyzed: 01/31/92

GC Column: DB624 ID: 0.530 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) <u>UG/KG</u>

74-87-3Chloromethane	26	ט
74-83-9Bromomethane	26	ט
75-01-4Vinyl Chloride	26	שׁ
75-00-3Chloroethane	26	U
75-09-2Methylene Chloride	120	В
67-64-1Acetone	420	В
75-15-0Carbon Disulfide	26	ט
75-35-41,1-Dichloroethene	26	ט
75-34-31,1-Dichloroethane	26	บ
540-59-01,2-Dichloroethene (total)	26	ט
67-66-3Chloroform	26	ע
107-06-21,2-Dichloroethane	26	ט
78-93-32-Butanone	160	-
71-55-61,1,1-Trichloroethane	26	U
56-23-5Carbon Tetrachloride	26	U
75-27-4Bromodichloromethane	26	ט
78-87-51,2-Dichloropropane	26	ט
10061-01-5cis-1,3-Dichloropropene	26	ן ט
79-01-6Trichloroethene	26	ט
124-48-1Dibromochloromethane	26	שׁן
79-00-51,1,2-Trichloroethane	26	ט
71-43-2Benzene	26	ט
10061-02-6Trans-1,3-Dichloropropene	26	ט
75-25-2Bromoform	26	ט
108-10-14-Methyl-2-Pentanone	340	
591-78-62-Hexanone	26	ש
127-18-4Tetrachloroethene	26	ט
79-34-51,1,2,2-Tetrachloroethane	26	ש
108-88-3Toluene	120	
108-90-7Chlorobenzene	26	ע
100-41-4Ethylbenzene	100	
100-42-5Styrene	26	ט
1330-20-7Xylene (total)	690	

CAS NO.

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

CHY16

Lab Name: COMPUCHEM.RTP Contract: 68D10083

and this

GPC Cleanup:

(Y/N) Y__

Lab Code: COMPU Case No.: <u>17744</u> SAS No.: <u>6579HO</u> SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477486

30.0 (g/mL) G Lab File ID: Sample wt/vol: GRD77486B08

(low/med) Date Received: Level: LOW 01/29/92

% Moisture: 62 decanted: (Y/N) N Date Extracted: 02/16/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/18/92

Injection Volume: _____2.0(uL) Dilution Factor:

pH: 6.0

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

108-95-2----Phenol 17000 U 111-44-4-----bis(2-Chloroethyl)Ether 17000 U 95-57-8----2-Chlorophenol_ 17000 U 541-73-1----1,3-Dichlorobenzene 17000 U 106-46-7-----1,4-Dichlorobenzene 17000 U 95-50-1----1,2-Dichlorobenzene U 17000 95-48-7----2-Methylphenol IJ 17000 108-60-1----2,2'-Oxybis(1-Chloropropane) U 17000 106-44-5----4-Methylphenol 17000 U 621-64-7----N-Nitroso-Di-n-Propylamine 17000 U 67-72-1-----Hexachloroethane__ U 17000 98-95-3-----Nitrobenzene 17000 Ü 78-59-1-----Isophorone 17000 U 88-75-5-----2-Nitrophenol 17000 U 105-67-9-----2,4-Dimethylphenol 17000 U 111-91-1----bis(2-Chloroethoxy)Methane 17000 U 120-83-2----2,4-Dichlorophenol_ 17000 U 120-82-1----1,2,4-Trichlorobenzene_ U 17000 91-20-3-----Naphthalene 4500 J 106-47-8-----4-Chloroaniline 17000 U 87-68-3-----Hexachlorobutadiene 17000 U 59-50-7----4-Chloro-3-Methylphenol U 17000 91-57-6----2-Methylnaphthalene 8000 J 77-47-4----Hexachlorocyclopentadiene 17000 U 88-06-2----2,4,6-Trichlorophenol 17000 U 95-95-4----2,4,5-Trichlorophenol 42000 U 91-58-7----2-Chloronaphthalene 17000 U 88-74-4----2-Nitroaniline 42000 U 131-11-3-----Dimethyl Phthalate U 17000 208-96-8-----Acenaphthylene 17000 U 606-20-2----2,6-Dinitrotoluene 17000 99-09-2----3-Nitroaniline 42000 U 83-32-9-----Acenaphthene 17000

3/90

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CHY16

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HQ SDG No.: CHY11

Matrix: (soil/water) SOIL

Lab Sample ID: 477486

GRD77486B08

Sample wt/vol: 30.0 (g/mL) G

Lab File ID:

Level: (low/med) LOW

Date Received: 01/29/92

% Moisture: 62 decanted: (Y/N) N Date Extracted: 02/16/92

Dilution Factor: 20.0

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/18/92

Injection Volume: 2.0(uL)

FPC Cleanup: (Y/N) Y pH: 6.0

CONCENTRATION UNITS:

CAS NO.

COMPOUND

(ug/L or ug/Kg) <u>UG/KG</u>

51-28-52,4-Dinitrophenol	42000	ט
100-02-74-Nitrophenol	42000	ប
132-64-9Dibenzofuran	17000	Ū
121-14-22,4-Dinitrotoluene	17000	Ū
84-66-2Diethylphthalate	17000	U
7005-72-34-Chlorophenyl-phenylether	17000	U
86-73-7Fluorene	2600	J
		U
534-52-14,6-Dinitro-2-Methylphenol	42000	υ
86-30-6N-Nitrosodiphenylamine (1)	17000	ไซ
101-55-34-Bromophenyl-phenylether	17000	ប
118-74-1Hexachlorobenzene	17000	U
87-86-5Pentachlorophenol	42000	U
85-01-8Phenanthrene	6500	J
120-12-7Anthracene	17000	Ū
Q5-71-QCarbagola	1 17000	Ū
84-74-2Di-n-Butylphthalate	17000	บั
206-44-0Fluoranthene	4900	Ĵ
129-00-0Pyrene	11000	Ĵ
85-68-7Butylbenzylphthalate	17000	Ū
91-94-13,31-Dichlorobenzidine	17000	ט
56-55-3Benzo(a)Anthracene	5200	J
218-01-9Chrysene	4300	J
218-01-9Chrysene	7500	J
117-84-0Di-n-Octyl Phthalate	17000	U
205-99-2Benzo(b) Fluoranthene	3900	Ĵ
207-08-9Benzo(k) Fluoranthene	17000	Ū
50-32-8	3700	J
193-39-5Indeno(1,2,3-cd) Pyrene	17000	Ū
53-70-3Dibenz(a,h)Anthracene	17000	บั
191-24-2Benzo(g,h,i)Perylene	7800	Ĵ
		-
		_

(1) - Cannot be separated from Diphenylamine

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

CHY16

Lab Name: COMPUCHEM.RTP

____ Contract: <u>68D10083</u>

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

 $\rho_{\rm ext}/\rho_{\rm ext}$

Matrix: (soil/water) SOIL

Lab Sample ID: 477486

Sample wt/vol:

30.0 (g/mL) G

Lab File ID:

GRD77486B08

Level: (low/med) LOW___

Date Received: 01/29/92

% Moisture: ___62

decanted: (Y/N) N__

Date Extracted: 02/16/92

Concentrated Extract Volume: 500.0 (uL)

Date Analyzed: 02/18/92

Injection Volume: _____2.0(uL)

Dilution Factor: ____20.0

GPC Cleanup: (Y/N) Y pH: 6.0

Number TICs found: 20

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN HYDROCARBON	11.32	63000	J
1 2.	UNKNOWN HYDROCARBON	11.79	97000	J l
3.	UNKNOWN HYDROCARBON	11.97	65000	J
4.	UNKNOWN HYDROCARBON	12.14	67000	J
5.	UNKNOWN HYDROCARBON	12.25	110000	J
6.	UNKNOWN HYDROCARBON	12.42	77000	J \
7.	UNKNOWN HYDROCARBON	12.54	93000	J
8.	UNKNOWN	12.70	70000	J
9.	UNKNOWN HYDROCARBON	12.87	150000	J
10.	UNKNOWN	12.97	61000	J
11.	UNKNOWN HYDROCARBON	13.32	130000	J
12.	UNKNOWN CYCLIC HYDROCARBON	13.65	82000	J
13.	UNKNOWN HYDROCARBON	13.79	130000	J
14.	UNKNOWN HYDROCARBON	14.10	130000	J Ì
15.	UNKNOWN HYDROCARBON	14.32	110000	J
16.	UNKNOWN HYDROCARBON	14.40	56000	J
17.	UNKNOWN HYDROCARBON	14.95	140000	J
18.	UNKNOWN	15.09	93000	J
19.	UNKNOWN	15.70	120000	J
20.	UNKNOWN	16.62	90000	J
20.	UNKNOWN	16.62	90000	J

Q

CHY16

Lab Name: COMPUCHEM, RTP

CAS NO.

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water)SOIL Lab Sample ID: 477486

Sample wt/vol: 30.40(g/ml)G Lab File ID:

COMPOUND

% Moisture: 62 decanted: (Y/N)N
Date Received: 01/29/92

Extraction: (SepF/Cont/Sonc) SONC Date Extracted: 02/03/92

Concentrated Extract Volume: 5000(uL) Date Analyzed: 02/07/92

Injection Volume: 2.0(uL) Dilution Factor: 1

GPC Cleanup: (Y/N)Y pH: 6.0 Sulfur Cleanup: (Y/N)N

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

319-84-6	alpha-BHC	1.1	 JP
319-85-7	beta-BHC	3.9	
319-86-8	delta-BHC		<u> </u>
	gamma-BHC (Lindane)		
76-44-8	Heptachlor	0.16	JPB
		·	
1024-57-3	Aldrin Heptachlor epoxide	4.4	
959-98-8	Endosulfan I	0.37	
60-57-1	Dieldrin	37	
72-55-9	4,4'-DDE	13	P
72-20-8	Endrin	1 46	P
33213-65-9	Endosulfan II	64	P
	4,4'-DDD		
1031-07-8	Endosulfan sulfate	19	P
50-29-3	4,4'-DDT	8.6	
72-43-5	Methoxychlor	180	
53494-70-5	Endrin ketone	8.6	Ū
7421-93-4	Endrin aldehyde	i53	P
5103-71-9	alpha-Chlordane	11	
5103-74-2	gamma-Chlordane		P
8001-35-2	Toxaphene		U
12674-11-2	Aroclor-1016		U
11104-28-2	Aroclor-1221	i170	
11141-16-5	Aroclor-1232		Ü
53469-21-9	Aroclor-1242		<u>U</u>
12672-29-6	Aroclor-1248	86	U
11097-69-1	Aroclor-1254	86	U
11096-82-5	Aroclor-1260		U

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

		CHY17	
Lab Name: <u>COMPUCH</u>	EM, RTP		
Lab Code: COMPU	Case No.: <u>17744</u>	SAS No.: 6579HO SDG No.: CHY11	
Matrix: (soil/wat	er) SOIL	Lab Sample ID: 477487	
Sample wt/vol:		Lab File ID: GH077487A18	
Level: (low/me	d) LOW	Date Received: 01/29/92	
% Moisture: not d	ec. <u>22</u>	Date Analyzed: 01/31/92	
GC Column: DB624	ID: <u>0.530</u> (mm)	Dilution Factor:1.0	
Soil Extract Volu	me: (uL)	Soil Aliquot Volume:(uL)
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q	-

	Chloromethane	13	U
4-83-9	Bromomethane	13	ប
5-01-4	Vinyl Chloride	13	ַ
5-00-3	Chloroethane	13	ប
5-09-2	Methylene Chloride	45	В
7-64-1	Acetone	28	В
5-15-0	Carbon Disulfide	13	ַ ע
5-35-4	1,1-Dichloroethene	13	טן
5-34-3	1,1-Dichloroethane	13	ע
	1,2-Dichloroethene (total)	13	U
7-66-3	Chloroform	13	ַט
.07-06-2	Chloroform 1,2-Dichloroethane	13	U
8-93-3	2-Butanone	13	U
1-55-6	1,1,1-Trichloroethane	13	\ฃ
6-23-5	Carbon Tetrachloride	13	ប
5-27-4	Bromodichloromethane	13	ט
8-87-5	1,2-Dichloropropane	13	U
0061-01-5-	cis-1,3-Dichloropropene	13	ט
9-01-6	Trichloroethene	13	ט
24-48-1	Dibromochloromethane	13	ען
9-00-5	1,1,2-Trichloroethane	13	ט
1-43-2	Benzene	13	ט
0061-02-6-	Trans-1,3-Dichloropropene	13	ט
	Bromoform	13	U
	4-Methyl-2-Pentanone	13	U
	2-Hexanone	13	ַ
	Tetrachloroethene	13	U
9-34-5	1,1,2,2-Tetrachloroethane	13	ַט
08-88-3	Toluene	13	ט
08-90-7	Chlorobenzene	13	U
.00-41-4	Ethylbenzene	13	ប
00-42-5	Styrene Xylene (total)	13	U
330-20-7	Xylene (total)	13	ט

CHY17

Lab Name: COMPUCHEM, RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477487

Sample wt/vol: 30.2 (g/mL) G Lab File ID: GRD77487A21

Date Received: 01/29/92 Level: (low/med) LOW___

% Moisture: ____22 decanted: (Y/N) N____ Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/11/92

Injection Volume: 2.0(uL) Dilution Factor: 2.0

PC Cleanup: (Y/N) Y pH: <u>6.6</u>

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u>

108-95-2Phenol	840	ប
111-44-4bis(2-Chloroethyl)Ether	840	ับ
95-57-82-Chlorophenol	840	U <
541-73-11,3-Dichlorobenzene	840	υ ,
106-46-71,4-Dichlorobenzene	840	ប
95-50-11,2-Dichlorobenzene	840	שׁ
05 40 5	840	U
108-60-12,2'-Oxybis(1-Chloropropane)	840	U
	840	ប
106-44-54-Methylphenol 621-64-7N-Nitroso-Di-n-Propylamine	840	U
6/-/2-1hexacnioroetnane	840	U
98-95-3Nitrobenzene	840	U
78-59-1Isophorone	840	U
88-75-52-Nitrophenol	840	U
105-67-92,4-Dimethylphenol	840	ט
111-91-1bis(2-Chloroethoxy)Methane	840	U
120-83-22,4-Dichlorophenol	840	ש
120-82-11,2,4-Trichlorobenzene	840	U
91-20-3Naphthalene	840	U
106-47-84-Chloroaniline	840	U
87-68-3Hexachlorobutadiene	840	שׁ
59-50-74-Chloro-3-Methylphenol	840	ប
91-57-62-Methylnaphthalene	840	U
77-47-4Hexachlorocyclopentadiene	840	U
88-06-22,4,6-Trichlorophenol	840	ប
95-95-42,4,5-Trichlorophenol	2000	ប
91-58-72-Chloronaphthalene	840	U
88-74-42-Nitroaniline	2000	U
131-11-3Dimethyl Phthalate	840	Ū
208-96-8Acenaphthylene	840	ប
606-20-22,6-Dinitrotoluene	840	U
99-09-23-Nitroaniline	2000	U
83-32-9Acenaphthene	98	J

CHY17

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477487

Sample wt/vol: 30.2 (g/mL) G Lab File ID: GRD77487A21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: ____22 decanted: (Y/N) N ___ Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/11/92

Injection Volume: 2.0(uL) Dilution Factor: 2.0

GPC Cleanup: (Y/N) Y pH: 6.6

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

2000 51-28-5----2,4-Dinitrophenol_____ U 100-02-7----4-Nitrophenol _ 2000 U 132-64-9-----Dibenzofuran 840 U 121-14-2----2,4-Dinitrotoluene_ U 840 84-66-2----Diethylphthalate 840 U 7005-72-3----4-Chlorophenyl-phenylether U 840 86-73-7-----Fluorene 840 U 100-01-6----4-Nitroaniline 2000 IJ 534-52-1----4,6-Dinitro-2-Methylphenol U 2000 86-30-6----N-Nitrosodiphenylamine (1) 840 U 101-55-3----4-Bromophenyl-phenylether U 840 118-74-1-----Hexachlorobenzene_ 840 U U 87-86-5-----Pentachlorophenol_ 2000 85-01-8-----Phenanthrene 620 J 120-12-7-----Anthracene 840 U 86-74-8-----Carbazole 100 J 84-74-2----Di-n-Butylphthalate 840 U 206-44-0-----Fluoranthene 1200 129-00-0----Pyrene 920 85-68-7-----Butylbenzylphthalate 840 91-94-1----3,3'-Dichlorobenzidine 840 U 56-55-3-----Benzo(a)Anthracene 630 J 218-01-9-----Chrysene 610 J 117-81-7----bis(2-Ethylhexyl)Phthalate___ U 840 117-84-0-----Di-n-Octyl Phthalate 840 U 205-99-2----Benzo(b) Fluoranthene 1500 X 207-08-9----Benzo(k) Fluoranthene 1500 X 50-32-8-----Benzo(a) Pyrene 480 J 193-39-5----Indeno(1,2,3-cd)Pyrene___ 600 J 53-70-3-----Dibenz(a,h)Anthracene____ J 200 191-24-2----Benzo(g,h,i)Perylene_ J 520

(1) - Cannot be separated from Diphenylamine

834

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CHY17

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477487

Sample wt/vol: 30.2 (g/mL) G Lab File ID: GRD77487A21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: ____22 decanted: (Y/N) N___ Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/11/92

Injection Volume: 2.0(uL) Dilution Factor: 2.0

PC Cleanup: (Y/N) Y pH: $\underline{6.6}$

CONCENTRATION UNITS:

Number TICs found: 23 (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
=======================================		=======		=====
1.	UNKNOWN	4.47	1500	J
2.	TETRACHLOROETHANE	4.58	420	J
3.	UNKNOWN	4.70	590	J
4.	ALDOL	4.82	1300	ABJ
5.	ALDOL	4.95	2900	AJ
6.	UNKNOWN	5.03	250	J
7.	UNKNOWN	5.27	680	J
8.	UNKNOWN	5.92	850	J
9.	THIENOPYRIDINE	7.57	1100	J
10. 615-22-5	BENZOTHIAZOLE, 2-(METHYLTHIO	10.44	510	JN
11.	UNKNOWN	10.79	510	J
12.	UNKNOWN	12.44	340	J
13.	UNKNOWN	12.65	1400	J
14.	UNKNOWN	13.15	340	J
15.	UNKNOWN	13.90	420	J
16.	LABORATORY ARTIFACT	14.62	170	BJ
17.	UNKNOWN	17.20	1300	J
18.	UNKNOWN PAH	17.34	850	J
19.	UNKNOWN	18.80	340	J
20.	UNKNOWN	18.84	420	J
21.	UNKNOWN	18.89	170	J
22.	UNKNOWN	21.52	1300	J
23.	UNKNOWN	23.44	250	J

CHY17

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water)SOIL

Lab Sample ID: <u>477487</u>

Sample wt/vol:

30.40(g/m1)G

Lab File ID:

% Moisture: 22 decanted: (Y/N)N

Date Received: 01/29/92

Extraction: (Sepf/Cont/Sonc)

SONC

Date Extracted: 02/03/92

Concentrated Extract Volume: 5000(uL)

Date Analyzed: 02/07/92

Injection Volume: 2.0(uL)

Dilution Factor: 1

CONCENTRATION UNITS:

GPC Cleanup: (Y/N)Y

рН:<u>6.6</u>

Sulfur Cleanup: (Y/N) N

CAS NO. COMPOUND (ug/L or ug/Kg)<u>UG/KG</u> Q 319-84-6----alpha-BHC_ 2.2|U 319-85-7----beta-BHC 2.2 U 2.2|U 319-86-8-----delta-BHC 58-89-9-----gamma-BHC (Lindane)_ <u> 14 | P</u> 76-44-8-----Heptachlor_ 16 | PB 309-00-2----Aldrin 14 1024-57-3-----Heptachlor epoxide 0.19|JP 2.2|U 959-98-8-----Endosulfan I____ 60-57-1-----Dieldrin_ <u> 31 | P</u> 4.2 U 72-55-9-----4,4'-DDE 39 | P 72-20-8-----Endrin 33213-65-9----Endosulfan II <u>2.2|JP</u> 72-54-8-----4,4'~DDD_ <u>4.2 U</u> 1031-07-8-----Endosulfan sulfate 4.2 U 50-29-3-----4,4'-DDT <u> 31 | P</u> 72-43-5-----Methoxychlor_ <u> 31 | PB</u> 53494-70-5----Endrin ketone 4.2 U 7421-93-4----Endrin aldehyde_ 4.2 U 5103-71-9----alpha-Chlordane <u>2.21U</u> 0.093 JP 5103-74-2----gamma-Chlordane_ 8001-35-2----Toxaphene 220 | U 12674-11-2----Aroclor-1016 <u>42|U</u> 11104-28-2----Aroclor-1221 <u>85 | U</u> 11141-16-5----Aroclor-1232 42 I U 53469-21-9----Aroclor-1242 <u>42|U</u> | 12672-29-6----Aroclor-1248 <u>42 | U</u> 11097-69-1----Aroclor-1254 42 | U 11096-82-5----Aroclor-1260_ 42 U

GC Column: <u>DB624</u> ID: <u>0.530</u> (mm)

Dilution Factor: 1.0

Lab Name: COMPUCHEM.	RTP	Contract: 9	68D10083	_	CHY18
Lab Code: COMPU	Case No.: <u>17744</u>	SAS No.:	6579НО	SDG 1	No.: <u>CHY11</u>
Matrix: (soil/water)	SOIL	Li	ab Sample	ID:	477489
Sample wt/vol:	5.0 (g/mL) G	Li	ab File ID	:	GH077489A18
Level: (low/med)	LOW	Da	ate Receiv	ed:	01/29/92
% Moisture: not dec.	28	Da	ate Analyz	ed:	01/31/92

Soil Extract Volume: _____ (uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:

CAS NO.	COMPOUND	(ug/L or ug/Kg		Q
74-87-3	Chloromethane		14	υ
74-83-9	Bromomethane		14	Ū
75-01-4	Vinyl Chloride	3	14	U
			14	U
75-09-2	Chloroethane_ Methylene Chlo	oride	52	В
67-64-1	Acetone		25	В
75-15-0	Acetone Carbon Disulfi	ide	14	U
75-35-4	l.l-Dichloroet	thene I	14	U
75-34-3	1,1-Dichloroet	thane	14	U
540-59-0	1,2-Dichloroet	thene (total)	14	ט
67-66-3	Chloroform		14	U
107-06-2	1,2-Dichloroet	hane	14	U
78-93-3	2-Butanone		14	U
71-55-6	1,1,1-Trichlor	roethane	14	U
56-23-5	Carbon Tetrach	nloride	14	U
75-27-4	Bromodichloron	methane_	14	U
78-87-5	1,2-Dichloropi	ropane	14	ט
10061-01-5-	cis-1,3-Dichlo	propropene	14	ַ ט
79-01-6	Trichloroether	ne	14	ט
124-48-1	Dibromochlorom	nethane	14	U
79-00-5	1,1,2-Trichlor	roethane	14	Ū
71-43-2	Benzene		14	U
10061-02-6	Trans-1,3-Dich	loropropene	14	ַ ט
75-25-2	Bromoform		14	U
108-10-1	Bromoform 4-Methyl-2-Per	ntanone	14	U
591-78-6	2-Hexanone		14	ט
127-18-4	Tetrachloroeth	nene	14	ש
79-34-5	1,1,2,2-Tetrac	chloroethane	14	ַט
108-88-3	Toluene		14	ט
108-90-/	Cniorobenzene		14	ש
100-41-4	Ethvlbenzene		14	ט
100-42-5	Styrene Xylene (total)		14	U
1330-20-7	Xylene (total)		14	U

1B

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

. W.

18

GPC Cleanup:

(Y/N) Y

EPA SAMPLE NO.

CHY18 Lab Name: COMPUCHEM.RTP _____ Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11_

Matrix: (soil/water) SOIL Lab Sample ID: 477489

Sample wt/vol: 30.4 (g/mL) G Lab File ID: GR077489C21

Level: (low/med) LOW_ Date Received: 01/29/92

___28 decanted: (Y/N) N__ % Moisture: Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/10/92

Dilution Factor: ____1.0 Injection Volume: _____2.0(uL)

pH: <u>6.1</u> CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

108-95-2----Phenol 450 U 111-44-4----bis(2-Chloroethyl)Ether_ 450 U 95-57-8----2-Chlorophenol U 450 541-73-1----1,3-Dichlorobenzene 450 U 106-46-7----1,4-Dichlorobenzene_ 450 U 95-50-1----1,2-Dichlorobenzene 450 U 95-48-7----2-Methylphenol 450 U 108-60-1----2,2'-Oxybis(1-Chloropropane) 450 U 106-44-5----4-Methylphenol 450 U 621-64-7----N-Nitroso-Di-n-Propylamine 450 TT 67-72-1-----Hexachloroethane 450 Ħ 98-95-3-----Nitrobenzene 450 U 78-59-1-----Isophorone 450 U 88-75-5----2-Nitrophenol 450 U 105-67-9----2,4-Dimethylphenol 450 Ū 111-91-1----bis(2-Chloroethoxy)Methane 450 U 120-83-2----2,4-Dichlorophenol 450 U 120-82-1----1,2,4-Trichlorobenzene U 450 91-20-3-----Naphthalene 450 U 106-47-8-----4-Chloroaniline U 450 87-68-3-----Hexachlorobutadiene U 450 59-50-7----4-Chloro-3-Methylphenol 450 U 91-57-6-----2-Methylnaphthalene 450 Ü 77-47-4-----Hexachlorocyclopentadiene 450 U 88-06-2----2,4,6-Trichlorophenol 450 U 95-95-4-----2,4,5-Trichlorophenol 1100 U 91-58-7----2-Chloronaphthalene 450 U 1100 88-74-4----2-Nitroaniline U 131-11-3-----Dimethyl Phthalate 450 U 208-96-8-----Acenaphthylene 450 U 606-20-2----2,6-Dinitrotoluene 450 U 99-09-2----3-Nitroaniline U 1100 J 83-32-9-----Acenaphthene

3/90

CHY18

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477489

Sample wt/vol: 30.4 (g/mL) G Lab File ID: GR077489C21

Level: (low/med) LOW Date Received: 01/29/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/10/92

Injection Volume: _____2.0(uL) Dilution Factor: ____1.0

GPC Cleanup: (Y/N) Y pH: 6.1

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

51-28-52,4-Dinitrophenol	1100	U
100-02-74-Nitrophenol	1100	ש
132-64-9Dibenzofuran	450	U
121-14-22,4-Dinitrotoluene	450	U
84-66-2Diethylphthalate	450	U
7005-72-34-Chlorophenyl-phenylether	450	U
B6-73-7Fluorene	66	J
100-01-64-Nitroaniline	1100	שׁ
534-52-14,6-Dinitro-2-Methylphenol	1100	ט
B6-30-6N-Nitrosodiphenylamine (1)	450	ט
101-55-34-Bromophenyl-phenylether	450	ט
118-74-1Hexachlorobenzene	450	ប
37-86-5Pentachlorophenol	1100	ប
35-01-8Phenanthrene	1200	
120-12-7Anthracene	140	J
36-74-8Carbazole	180	J
84-74-2Di-n-Butylphthalate	450	ប
206-44-0Fluoranthene	3700	E
129-00-0Pyrene	2700	
85-68-7Butylbenzylphthalate	450	U
91-94-13,3'-Dichlorobenzidine	450	U
56-55-3Benzo(a)Anthracene	1700	
218-01-9Chrysene	1600	
117-81-7bis(2-Ethylhexyl)Phthalate	450	U
117-84-0Di-n-Octyl Phthalate	450	U
205-99-2Benzo(b)Fluoranthene	4600	EX
207-08-9Benzo(k)Fluoranthene	4600	EX
50-32-8Benzo(a)Pyrene	1200	
193-39-5Indeno(1,2,3-cd)Pyrene	980	
53-70-3Dibenz(a,h)Anthracene	350	J

(1) - Cannot be separated from Diphenylamine

896

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

CHY18

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477489

Sample wt/vol: 30.4 (g/mL) G Lab File ID: GR077489C21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: ___28 decanted: (Y/N) N___ Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/10/92

Injection Volume: 2.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y pH: <u>6.1</u>

Number TICs found: 23 CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN	4.25	410	J
2.	UNKNOWN ALKENE	4.37	410	J
3.	UNKNOWN ALKENE	4.50	2200	J
4.	TETRACHLOROETHANE	4.62	320	J
5.	UNKNOWN	4.72	1500	J
6.	ALDOL	4.83	270	ABJ
7.	ALDOL	4.97	460	AJ
8.	UNKNOWN	5.07	370	J
9.	UNKNOWN	5.28	1100	J
10.	ALDOL	5.47	180	ĀJ
11.	UNKNOWN	5.93	1500	J
12.	UNKNOWN	7.40	180	J
13.	UNKNOWN	7.58	270	J
14.	UNKNOWN	12.32	180	J
15. 57-10-3	HEXADECANOIC ACID	12.40	230	JN
16.	UNKNOWN PAH	12.47	180	J
17.	UNKNOWN PNA	12.77	180	J
18.	UNKNOWN	16.07	460	J
19.	UNKNOWN HYDROCARBON	17.20	6900	J
20.	BENZOPYRENE	17.37	1500	J
21.	UNKNOWN	18.29	1400	J
22.	UNKNOWN	18,85	9100	J
23.	UNKNOWN	21.47	4000	J

CHY18DL

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

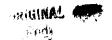
Matrix: (soil/water) SOIL Lab Sample ID: 477489

Sample wt/vol: _30.4 (g/mL) G Lab File ID: GDJ77489A21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: ____28 decanted: (Y/N) N ___ Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/12/92


Injection Volume: 2.0(uL) Dilution Factor: 2.0

PC Cleanup: (Y/N) Y pH: 6.1

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

	<i></i>	-
108-95-2Phenol	900	ט
111-44-4bis(2-Chloroethyl)Ether	900	U
95-57-82-Chlorophenol	900	ן ט
541-73-11.3-Dichlorobenzene	900	บ
106-46-71,4-Dichlorobenzene	900	ע
95-50-11,2-Dichlorobenzene	900	U
05 40 5 0 16-th1-h1	900	U
108-60-12,2'-0xybis(1-Chloropropane)_	900	ן ד
	900	U
106-44-54-Methylphenol621-64-7N-Nitroso-Di-n-Propylamine	900	U
6/-/2-1nexachioroethane	900	U
98-95-3Nitrobenzene	900	U
78-59-1Isophorone	900	שׁ
88-75-52-Nitrophenol	900	U
105-67-92,4-Dimethylphenol	900	U
111-91-1bis(2-Chloroethoxy)Methane	900	שׁ
120-83-22,4-Dichlorophenol	900	U
120-82-11,2,4-Trichlorobenzene	900	ע
91-20-3Naphthalene	900	שׁ
106-47-84-Chloroaniline	900	U
87-68-3Hexachlorobutadiene	900	U
59-50-74-Chloro-3-Methylphenol	900	บ
91-57-62-Methylnaphthalene	900	ซ
77-47-4Hexachlorocyclopentadiene	900	U
88-06-22,4,6-Trichlorophenol	900	U
95-95-42,4,5-Trichlorophenol	2200] ט
91-58-72-Chloronaphthalene	900	บ
88-74-42-Nitroaniline	2200	U
131-11-3Dimethyl Phthalate	900	U
208-96-8Acenaphthylene	900	U
606-20-22,6-Dinitrotoluene	900	ן ט
99-09-23-Nitroaniline	2200	שׁ
83-32-9Acenaphthene	110	עם
		.

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CHY18DL

Lab Name: COMPUCHEM.RTP ___ Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Lab Sample ID: 477489 Matrix: (soil/water) SOIL

Sample wt/vol: 30.4 (g/mL) G Lab File ID: GDJ77489A21

Date Received: 01/29/92 Level: (low/med) LOW _

% Moisture: ____28 decanted: (Y/N) N__ Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/12/92

Injection Volume: _____2.0(uL) Dilution Factor: 2.0

GPC Cleanup: (Y/N) Y pH: 6.1

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

51-28-52,4-Dinitrophenol	2200	ן ט
100-02-74-Nitrophenol	2200	ט
132-64-9Dibenzofuran	900	שׁן
121-14-22,4-Dinitrotoluene	900	ีซ
34-66-2Diethylphthalate	390	Ta
7005-72-34-Chlorophenyl-phenylether	900	U
36-73-7Fluorene	92	Ta
LOO-01-64-Nitroaniline	2200	U
534-52-14,6-Dinitro-2-Methylphenol	2200	υ
36-30-6N-Nitrosodiphenylamine (1)	900	ซ
101-55-34-Bromophenyl-phenylether	900	ď
118-74-1Hexachlorobenzene	900	ប
37-86-5Pentachlorophenol	2200	שׁ
35-01-8Phenanthrene	1400	ם
120-12-7Anthracene_	240	M
36-74-8Carbazole	260	DJ
34-74-2Di-n-Butylphthalate	900	ט
206-44-0Fluoranthene	3900	D
129-00-0Pyrene	3300	D
35-68-7Butylbenzylphthalate	900	ប
31-94-13,3'-Dichlorobenzidine	900	שו
56-55-3Benzo(a)Anthracene	1700	ם
218-01-9Chrysone	2100	ם
117-81-7bis(2-Ethylhexyl)Phthalate	900	ט
117-84-0Di-n-Octyl Phthalate	900	שׁוְ
205-99-2Benzo(b) Fluoranthene	4400	DX
207-08-9Benzo(k) Fluoranthene	4400	DX
50-32-8Benzo(a)Pyrene	1900	ם
193-39-5Indeno(1,2,3-cd)Pyrene	1700	D
53-70-3Dibenz(a,h)Anthracene	590	DJ
191-24-2Benzo(g,h,i)Perylene	1800	מוֹ

(1) - Cannot be separated from Diphenylamine

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CHY18DL

Lab Name: COMPUCHEM.RTP

___ Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL

Lab Sample ID: 477489

Sample wt/vol:

<u>30.4</u> (g/mL) <u>G</u>

Lab File ID:

GDJ77489A21

Level: (low/med) LOW

Date Received: 01/29/92

% Moisture: ___28 decanted: (Y/N) N___ Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL)

Date Analyzed: 02/12/92

Injection Volume: _____2.0(uL)

Dilution Factor: 2.0

Number TICs found: 26

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT ======	EST. CONC.	Q ======
1.	UNKNOWN ALKENE	4.37	1200	J
2.	TETRACHLOROETHANE	4.48	370	J
3.	UNKNOWN	4.58	1900	J
4.	ALDOL	4.72	820	ABJ
5.	UNKNOWN	4.95	370	J
6.	UNKNOWN	5.17	1300	J
7.	UNKNOWN	5.82	1600	J
8.	UNKNOWN	7.47	370	J
9.	BLANK CONTAMINANT	7.80	820	BJ
' 10.	BLANK CONTAMINANT	9.09	910	BJ
- 11.	UNKNOWN SUBST. PROPANOIC ACI	10.05	1700	J
12.	BLANK CONTAMINANT	11.17	2300	J
13.	UNKNOWN SILOXANE	12.02	2300	BJ
14. 57-10-3	HEXADECANOIC ACID	12.29	370	JN
15.	UNKNOWN	12.55	640	J
16.	UNKNOWN PNA	12.64	270	J
17.	UNKNOWN SILOXANE	12.80	2000	J
18.	UNKNOWN SILOXANE	14.17	1800	J
19.	LAB. ARTIFACT	14.50	370	BJ
20.	UNKNOWN SILOXANE	14.79	1600	J
21.	UNKNOWN SILOXANE	15.40	1300	J
22.	UNKNOWN HYDROCARBON	15.95	550	J
23.	UNKNOWN SILOXANE	16.02	1000	J
24.	UNKNOWN HYDROCARBON	17.05	5400	J
25.	UNKNOWN PAH	17.17	2700	J
26.	UNKNOWN	18.67	7200	J

PESTICIDE ORGANICS ANALYSIS DATA SHEET

Lab Name: COMPUCHEM, RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water)SOIL Lab Sample ID: 477489 R1

Sample wt/vol: 30.00(g/ml)G Lab File ID:

% Moisture: 28 decanted: (Y/N)N Date Received: 01/29/92

Extraction: (SepF/Cont/Sonc) SONC Date Extracted: 02/16/92

Concentrated Extract Volume: 5000(uL) Date Analyzed: 02/18/92

Injection Volume: 2.0(uL) Dilution Factor: 1

GPC Cleanup: (Y/N)Y pH: 6.1 Sulfur Cleanup: (Y/N)N

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

319-84-6alpha-BHC	2.4	<u>U</u>
319-85-7beta-BHC	12.4	Ū
319-86-8delta-BHC	12.4	Ū
58-89-9gamma-BHC (Lindane)	2.4	U
76-44-8Heptachlor	12.41	U
309-00-2Aldrin	0.36	JP
309-00-2Aldrin	0.54	JP
959-98-8Endosulfan I	12.4	<u>U</u>
60-57-1Dieldrin	[0.27]	JP
72-55-94,4'-DDE	2.8	J
72-20-8Endrin	12.6	JPB
72-20-8Endrin	12.6	J
72-54-84,4'-DDD	14.61	U
1031-07-8Endosulfan sulfate	14.61	U_
50-29-34,4'-DDT	0.48	JP
72-43-5Methoxychlor	<u> 18 </u>	<u>JPB</u>
53494-70-5Endrin ketone	14.6	U
7421-93-4Endrin aldehyde	<u> 4.6</u>	<u>U</u>
5103-71-9alpha-Chlordane	12.4	U
5103-74-2gamma-Chlordane	10.23	JP_
8001-35-2Toxaphene	240	<u>u</u>
12674-11-2Aroclor-1016	1461	U
11104-28-2Aroclor-1221	. 93	U
11141-16-5Aroclor-1232	146	<u>U</u>
53469-21-9Aroclor-1242	. 46	<u>U</u>
12672-29-6Aroclor-1248		U
11097-69-1Aroclor-1254	146	<u>U</u>
11096-82-5Aroclor-1260	.i <u>46</u> i	<u>U</u>

1 Miles

VOLATILE ORGANICS ANALYSIS DATA SHEET

_____5.0 (g/mL) <u>G_____</u>

COMPOUND

EPA SAMPLE NO.

GH077490A18

Q

Lab Name: COMPUCHEM.RTP _____ Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Lab Sample ID: <u>477490</u> Matrix: (soil/water) SOIL

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: not dec. 24 Date Analyzed: 01/31/92

GC Column: <u>DB624</u> ID: <u>0.530</u> (mm) Dilution Factor: ____1.0

Soil Extract Volume: ____ (uL) Soil Aliquot Volume: ____(uL)

> CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

Lab File ID:

		·
74-87-3Chloromethane	13	ָ _U
74-83-9Bromomethane	_	บั
75-01-4Vinyl Chloride	i3	บ
75-00-3Chloroethane	_	Ισ
75-09-2Methylene Chloride	- 47	В
67-64-1Acetone	57	B
75-15-0Carbon Disulfide	_ 13	บี
75-35-41,1-Dichloroethene		บั
75-34-31.1-Dichloroethane	_	u u
75-34-31,1-Dichloroethane (total)	_	บ
57-66-3Chloroform	- 13	Ū
107-06-21,2-Dichloroethane		บั
78-93-32-Butanone	_	บั
71-55-61,1,1-Trichloroethane		Ū
56-23-5Carbon Tetrachloride		Ü
75-27-4Bromodichloromethane	13	Ū
78-87-51,2-Dichloropropane	_ 13	U
10061-01-5cis-1,3-Dichloropropene	13	υ
79-01-6Trichloroethene	13	บ
124-48-1Dibromochloromethane	_ 13	שׁו
79-00-51,1,2-Trichloroethane	13	lυ
71-43-2Benzene	13	U
L0061-02-6Trans-1,3-Dichloropropene_	_ 13	ប
		ซ
75-25-2Bromoform 108-10-14-Methyl-2-Pentanone	13	ט
591-78-62-Hexanone	13	ប
127-18-4Tetrachloroethene	13	U
79-34-51,1,2,2-Tetrachloroethane_	13	U
108-88-3Toluene	13	שׁ
108-90-7Chlorobenzene	_ 13	U
100-41-4Ethylbenzene] 13	[ซ
100-42-5Styrene	13	บ
1330-20-7Xylene (total)	13	U
	ı	l .

Sample wt/vol:

CAS NO.

CHY19

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: <u>COMPU</u> Case No.: <u>17744</u> SAS No.: <u>6579HO</u> SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477490

Sample wt/vol: 30.4 (g/mL) G Lab File ID: GRD77490A21

Date Received: Level: (low/med) LOW 01/29/92

% Moisture: 24 decanted: (Y/N) N Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/12/92

Injection Volume: 2.0(uL) Dilution Factor: _____2.0

GPC Cleanup: (Y/N) <u>Y</u> pH: <u>6.2</u>

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u> Q

108-95-2----Phenol 860 ŢŢ 111-44-4----bis(2-Chloroethyl)Ether 860 U 95-57-8----2-Chlorophenol U 860 541-73-1----1,3-Dichlorobenzene 860 U 106-46-7----1,4-Dichlorobenzene 860 U 95-50-1-----1,2-Dichlorobenzene U 860 95-48-7----2-Methylphenol U 860 108-60-1----2,2'-Oxybis(1-Chloropropane) U 860 106-44-5----4-Methylphenol U 860 621-64-7----N-Nitroso-Di-n-Propylamine 860 U 67-72-1-----Hexachloroethane U 860 98-95-3-----Nitrobenzene U 860 78-59-1-----Isophorone 860 U 88-75-5----2-Nitrophenol U 860 105-67-9----2,4-Dimethylphenol U 860 111-91-1----bis(2-Chloroethoxy)Methane U 860 120-83-2----2,4-Dichlorophenol 860 U 120-82-1----1,2,4-Trichlorobenzene 860 U 91-20-3-----Naphthalene 150 J 106-47-8-----4-Chloroaniline U 860 87-68-3-----Hexachlorobutadiene U 860 59-50-7----4-Chloro-3-Methylphenol 860 U 91-57-6----2-Methylnaphthalene 95 J 77-47-4-----Hexachlorocyclopentadiene 860 U 88-06-2----2,4,6-Trichlorophenol 860 U 95-95-4----2,4,5-Trichlorophenol 2100 U 91-58-7----2-Chloronaphthalene 860 U 88-74-4----2-Nitroaniline 2100 U 131-11-3-----Dimethyl Phthalate_ 860 U 208-96-8-----Acenaphthylene U 860 606-20-2----2,6-Dinitrotoluene 860 U 99-09-2----3-Nitroaniline Ų 2100 83-32-9-----Acenaphthene J 440 3/90

Chiwer.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CHY19

Lab Name: COMPUCHEM, RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477490

Sample wt/vol: 30.4 (g/mL) G Lab File ID: GRD77490A21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: ___24 decanted: (Y/N) N ___ Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/12/92

Injection Volume: 2.0(uL) Dilution Factor: 2.0

FPC Cleanup: (Y/N) Y pH: 6.2

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

51-28-5----2,4-Dinitrophenol____ U 2100 100-02-7----4-Nitrophenol 2100 U 132-64-9-----Dibenzofuran 130 J 121-14-2----2,4-Dinitrotoluene U 860 84-66-2----Diethylphthalate_ 860 U 7005-72-3----4-Chlorophenyl-phenylether 860 U 86-73-7-----Fluorene 180 J 100-01-6----4-Nitroaniline 2100 U 534-52-1----4,6-Dinitro-2-Methylphenol 2100 U 86-30-6----N-Nitrosodiphenylamine (1)___ 860 U 101-55-3----4-Bromophenyl-phenylether 860 U 118-74-1-----Hexachlorobenzene 860 U 87-86-5----Pentachlorophenol_ 2100 U 85-01-8-----Phenanthrene 2300 J 120-12-7-----Anthracene 450 86-74-8-----Carbazole 330 J 84-74-2-----Di-n-Butylphthalate___ 860 U 206-44-0----Fluoranthene 4100 129-00-0----Pyrene 2000 85-68-7-----Butylbenzylphthalate U 860 91-94-1----3,3'-Dichlorobenzidine 860 U 56-55-3----Benzo(a)Anthracene__ 1400 218-01-9-----Chrysene 1500 117-81-7----bis(2-Ethylhexyl)Phthalate U 860 117-84-0-----Di-n-Octyl Phthalate_ U 860 Х 205-99-2----Benzo(b) Fluoranthene 3000 207-08-9----Benzo(k)Fluoranthene_ 3000 Х 50-32-8-----Benzo(a) Pyrene_ 1600 193-39-5----Indeno(1,2,3-cd)Pyrene__ 1100 53-70-3-----Dibenz(a,h)Anthracene 400 J 191-24-2----Benzo(g,h,i)Perylene_ 1000

(1) - Cannot be separated from Diphenylamine

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

CHY19

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477490

Sample wt/vol: 30.4 (g/mL) G Lab File ID: GRD77490A21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: 24 decanted: (Y/N) N Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/12/92

Injection Volume: 2.0(uL) Dilution Factor: 2.0

GPC Cleanup: (Y/N) Y pH: 6.2

Number TICs found: 22

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN	4.18	430	J
2.	UNKNOWN ALKENE	4.30	690	J
3.	UNKNOWN	4.45	5500	J
4.	TETRACHLOROETHANE	4.55	610	J
5.	UNKNOWN	4.65	2900	J
6.	ALDOL	4.80	1000	ABJ
7.	UNKNOWN	4.95	350	J
8.	UNKNOWN	5.02	610	J
9.	UNKNOWN	5.25	2400	J
10.	UNKNOWN	5.90	1200	J
11.	BLANK CONTAMINANT	11.27	260	BJ
12.	UNKNOWN PAH	12.45	350	J
13.	UNKNOWN PNA	12.75	350	J
14.	UNKNOWN	17.19	1000	J
15.	UNKNOWN PAH	17.32	1300	J
16.	UNKNOWN	18.27	350	J
17.	UNKNOWN	18.72	350	J
18.	UNKNOWN	18.77	430	J
19.	UNKNOWN	18.84	350	J
20.	UNKNOWN	21.47	780	J
21.	UNKNOWN	21.54	870	J
22.	UNKNOWN	23.45	610	J

Office Office

1D PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CHY19

Q

Lab Name: COMPUCHEM, RTP

Contract: 68D10083

Case No.: 17744 SAS No.: 6579HQ SDG No.: CHY11

Matrix: (soil/water)SOIL

Lab Sample ID: <u>477490</u>

Sample wt/vol:

Lab Code: <u>COMPU</u>

30.30(g/m1)G

Lab File ID:

% Moisture: 24 decanted: (Y/N)N

Date Received: 01/29/92

Extraction: (SepF/Cont/Sonc)

SONC

Date Extracted: 02/03/92

Concentrated Extract Volume: 5000(uL)

Date Analyzed: 02/07/92

Injection Volume: 2.0(uL)

Dilution Factor: 1

GPC Cleanup: (Y/N)Y

рН:<u>6.2</u>

Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg)<u>UG/KG</u>

 319-84-6alpha-BHC	0.081 JP
319-85-7beta-BHC	
319-86-8delta-BHC	2.2
58-89-9qamma-BHC (Lindane)	2.2 U
76-44-8Heptachlor	0.15 JPB
309-00-2Aldrin	0.39 JP
1024-57-3Heptachlor epoxide	
959-98-8Endosulfan I	
60-57-1Dieldrin	,
72-55-94,4'-DDE	_ <u>1.1</u> <u>J</u>
72-20-8Endrin	_ <u>1.5</u> <u>JP</u>
33213-65-9Endosulfan II	_ 0.48 JP
72-54-84,4'-DDD	_ 4.3 U
1031-07-8Endosulfan sulfate	
50-29-34,4'-DDT	
72-43-5Methoxychlor	6.5 JPB
53494-70-5Endrin ketone	_ <u>4.3 U</u>
7421-93-4Endrin aldehyde	i4.3 <u>U</u>
5103-71-9alpha-Chlordane	_i
5103-74-2gamma-Chlordane	2,2 U
8001-35-2Toxaphene	
12674-11-2Aroclor-1016	43 U
11104-28-2Aroclor-1221	
11141-16-5Aroclor-1232	43 Ü
53469-21-9Aroclor-1242	43 U
12672-29-6Aroclor-1248	- i 43 i U
11097-69-1Aroclor-1254	43 U
11096-82-5Aroclor-1260	43 U
TIO)U-UZ-JRIOCIOI-IZUU	_
	_1

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

COMPOUND

EPA SAMPLE NO.

Q

Lab Name: COMPUCHEM.RTP		CHY20
Lab Code: COMPU Case No.: 17744	SAS No.: 6579HO SDG No.	: CHY11
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: 47	77491
Sample wt/vol:5.0 (g/mL) G	Lab File ID: GF	1077491A18
Level: (low/med) LOW	Date Received: 01	/29/92
% Moisture: not dec35	Date Analyzed: 01	/31/92
GC Column: <u>DB624</u> ID: <u>0.530</u> (mm)	Dilution Factor: _	1.0
Soil Extract Volume: (uL)	Soil Aliquot Volum	ne:(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

U 74-87-3-----Chloromethane 15 74-83-9-----Bromomethane 15 U 75-01-4------Vinyl Chloride 15 U 75-00-3-----Chloroethane U 15 75-09-2-----Methylene Chloride 70 В 67-64-1-----Acetone 69 В 75-15-0-----Carbon Disulfide Ŭ 15 U 75-35-4-----1,1-Dichloroethene 15 75-34-3-----1,1-Dichloroethane 15 U 540-59-0-----1,2-Dichloroethene (total) 15 U 67-66-3-----Chloroform 15 U 107-06-2----1,2-Dichloroethane 15 Ų 78-93-3-----2-Butanone 15 U 71-55-6-----1,1,1-Trichloroethane 15 U 56-23-5-----Carbon Tetrachloride 15 U 75-27-4-----Bromodichloromethane 15 U 78-87-5------1,2-Dichloropropane 15 U 10061-01-5----cis-1,3-Dichloropropene U 15 79-01-6-----Trichloroethene U 15 124-48-1-----Dibromochloromethane 15 U 79-00-5-----1,1,2-Trichloroethane 15 U 71-43-2----Benzene U 15 10061-02-6----Trans-1,3-Dichloropropene U 15 75-25-2-----Bromoform 15 U 108-10-1----4-Methyl-2-Pentanone 15 IJ 591-78-6----2-Hexanone U 15 127-18-4-----Tetrachloroethene 15 U 79-34-5-----1,1,2,2-Tetrachloroethane 15 U

FORM I VOA

15

15

15

15

15

U

U

U

U

U

108-88-3-----Toluene

100-42-5-----Styrene_

108-90-7-----Chlorobenzene

100-41-4-----Ethylbenzene

1330-20-7-----Xylene (total)

CAS NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

 $-ii_{\mathcal{H}_{i},i_{j}}$

CHY20

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477491

Sample wt/vol: 30.5 (g/mL) G Lab File ID: GRD77491C21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: 35 decanted: (Y/N) N Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/11/92

Injection Volume: 2.0(uL) Dilution Factor: 15.0

FPC Cleanup: (Y/N) Y pH: 6.7 CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

108-95-2Phenol	7500	ט
111-44-4bis(2-Chloroethyl)Ether	7500	ប
95-57-8	7500	ע
541-73-11,3-Dichlorobenzene	7500	ט
106-46-71,4-Dichlorobenzene	7500	U
95-50-11,2-Dichioropenzene	7500	ប
		บ
95-48-72-Methylphenol 108-60-12,2'-Oxybis(1-Chloropropane)_	7500	Jυ
		ט
106-44-5	7500	บ
67-72-1Hexachloroethane	7500	บ
98-95-3Nitrobenzene	l 7500	ט
78-59-1Isophorone	7500	ซ
88-75-52-Nitrophenol	1 7500	ט
105-67-92,4-Dimethylphenol	7500	U
111-91-1bis(2-Chloroethoxy)Methane	7500	ט
120-83-22,4-Dichlorophenol	7500	ע
120-82-11,2,4-Trichlorobenzene	7500	U
91-20-3Nanhthalene	2500	J
106-47-84-Chloroaniline	7500	ט
87-68-3Hexachlorobutadiene 59-50-74-Chloro-3-Methylphenol	7500	ט
59-50-74-Chloro-3-Methylphenol	7500	ט
41-57-6	798	J
77-47-4Hexachlorocyclopentadiene	7500	ט
88-06-22,4,6-Trichlorophenol 95-95-42,4,5-Trichlorophenol	7500	ט
95-95-42,4,5-Trichlorophenol	18000	ַ ע
91-58-72-Chloronaphthalene	7500	U
88-74-42-Nitroaniline	18000	U
131-11-3Dimethyl Phthalate	7500	ט
208-96-8Acenaphthylene	7500	ט
208-96-8Acenaphthylene 606-20-22,6-Dinitrotoluene 99-09-23-Nitroaniline	7500	ע
99-09-23-Nitroaniline	18000	ט
83-32-9Acenaphthene	9000	
		_

FORM I SV-1

GPC Cleanup:

(Y/N) <u>Y</u>

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CHY20

Contract: <u>68D10083</u> Lab Name: COMPUCHEM.RTP

Lab Code: COMPU__ Case No.: <u>17744</u> SAS No.: <u>6579HO</u> SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477491

30.5 (g/mL) GLab File ID: Sample wt/vol: GRD77491C21

(low/med) Date Received: Level: LOW 01/29/92

% Moisture: ___35 decanted: (Y/N) N Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/11/92

Injection Volume: _____2.0(uL) Dilution Factor: ____15.0

pH: <u>6.7</u>

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u>

	(-3,		_
51-28-5	2,4-Dinitrophenol	18000	ט
100-02-7	4-Nitrophenol	18000	ט
132-64-9	Dibenzofuran	_ 2900	J
121-14-2	2,4-Dinitrotoluene	7500	U
			ប
7005-72-3	Diethylphthalate 4-Chlorophenyl-phenylether	7500	Ū
86-73-7	6-73-7Fluorene		J
100-01-6	4-Nitroaniline		ט
534-52-1	4,6-Dinitro-2-Methylphenol_	18000	ប
86-30-6	N-Nitrosodiphenylamine (1)	7500	U
101-55-3	4-Bromophenyl-phenylether	7500	ប
118-74-1	Hexachlorobenzene	7500	U
87-86-5	Pentachlorophenol	18000	U
85-01-8	Phenanthrene	75000	E
120-12-7	Anthracene	14000	
86-74-8	Carbazole	11000	l
84-74-2	Di-n-Butylphthalate	7500	ប
206-44-0	Fluoranthene	110000	E
129-00-0	Pyrene	51000	1
85-68-7	Butylbenzylphthalate	7500	U
91-94-1	3,3'-Dichlorobenzidine	7500	U
56-55-3	Benzo(a) Anthracene	33000	ļ
210-01-0	Christiano	22000	
117-81-7	bis(2-Ethylhexyl)Phthalate	1600	J
117-84-0	Di-n-Octyl Phthalate	7500	ប
205-99-2	Benzo(b) Fluoranthene	65000	EX
207-08-9	Benzo(k) Fluoranthene	65000	EX
50-32-8	Benzo(a) Pyrene	30000	}
193-39-5- 	Indeno(1,2,3-cd)Pyrene	11000	
53-70-3	Dibenz(a,h)Anthracene	5300	J
101-24-2	Benzo(g,h,i)Perylene	7600	

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

3/90

EPA SAMPLE NO.

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

Lab Name: COMPUCHEM.RTP

_____ Contract: 68D10083

CHY20

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO

SDG No.: CHY11

Matrix: (soil/water) SOIL

Lab Sample ID: <u>477491</u>

Sample wt/vol: 30.5 (g/mL) G

Lab File ID:

GRD77491C21

Level: (low/med) LOW

Date Received: 01/29/92

% Moisture: <u>35</u> decanted: (Y/N) N

Date Extracted: 02/04/92

Date Analyzed: 02/11/92

Injection Volume: _____2.0(uL)

Dilution Factor: _____15.0

PC Cleanup: (Y/N) Y pH: <u>6.7</u>

Concentrated Extract Volume: 500.0 (uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

Number TICs found: 22

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	ALDOL	4.85	3800	ABJ
2.	BLANK CONTAMINANT	9.22	2300	BJ
3.	HYDROXYNAPHTHALENEDIONE	9.79	23000	J
4.	UNKNOWN PAH	12.50	7600	J
5.	UNKNOWN PAH	13.82	7600	J
6.	UNKNOWN PAH	13.95	8300	J
7.	BENZO FLUORENE	14.12	18000	J
8.	BENZOFLUORENE	14.20	11000	J
9.	METHYL PYRENE	14.25	8300	J
10.	UNKNOWN PAH	14.29	7600	J
11.	UNKNOWN PAH	14.82	8300	J
12.	UNKNOWN PAH	14.99	12000	J
13.	UNKNOWN PAH	15.02	7600	J
14.	UNKNOWN PAH	15.05	13000	J
15.	UNKNOWN PAH	15.12	7600	J
16.	UNKNOWN PAH	15.49	12000	J
17.	UNKNOWN PAH	15.64	9800	J
18.	UNKNOWN PAH	15.69	7600	J
19.	UNKNOWN PAH	15.89	15000	J
20.	UNKNOWN	16.10	17000	J
21.	BENZOFLUORANTHENE	17.09	6100	J
22.	BENZOFLUORANTHENE	17.40	22000	J

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CHY20DL

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477491

Sample wt/vol: 30.5 (g/mL) G Lab File ID: GDJ77491A21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: 35 decanted: (Y/N) N Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/13/92

Injection Volume: 2.0(uL) Dilution Factor: 30.0

GPC Cleanup: (Y/N) Y pH: 6.7

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG Q

CAS NO.	COMPOUND	(ug/L c	or ug/kg)	UG/KG	Q
108-95-2	Phenol			15000	ט
111-44-4	bis(2-Chloroethyl)Et	her	<u> </u>	15000	ĺΰ
				15000	Ū
541-73-1	2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene			15000	ט
106-46-7	1,4-Dichlorobenzene			15000	บ
95-50-1	1,2-Dichlorobenzene		 .	15000	ĺυ
	- A- A-1 7 . 1		 1	15000	U
108-60-1	2,2'-0xybis(1-Chloro	propane	3)	15000	U
106-44-5	4-Methylphenol			15000	ט
621-64-7	N-Nitroso-Di-n-Propy	lamine		15000	ט
67-72-1	Hexachloroethane	-		15000	U
98-95-3	Nitrobenzene		i	15000	ប
78-59-1	Isophorone			15000	Ū
88-75-5	2-Nitrophenol	_]	15000	ַט
105-67-9	2,4-Dimethylphenol_			15000	บ
111-91-1	bis(2-Chloroethoxy)M	ethane		15000	ប
120-83-2	2,4-Dichiorophenoi			15000	U
120-82-1	1,2,4-Trichlorobenze	ne	 [15000	U
91-20-3	Naphthalene			2700	W
106-47-8	4-Chloroaniline			15000	ប
	Hexachlorobutadiene			15000	U
59-50-7	4-Chloro-3-Methylphe	nol	 i	15000)ប
91-57-6	2-Methylnaphthalene	·		15000	Ųυ
77-47-4	Hexachlorocyclopenta	diene	<u> </u>	15000	ប
88-06-2	2,4,6-Trichloropheno	1		15000	บ
95-95-4	2,4,5-Trichloropheno	1		36000	U
91-58-7	2-Chloronaphthalene		<u> </u>	15000	ប
88-74-4	2-Nitroaniline		[36000	ט
131-11-3	Dimethyl Phthalate			15000	ט
208-96-8	Acenaphthylene			15000	ប
606-20-2	2,6-Dinitrotoluene			15000	U
99-09-2	3-Nitroaniline)	36000	ט
83-32-9	Acenaphthene			10000	DJ
	·				-

3/90

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CHY20DL

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477491

Sample wt/vol: 30.5 (g/mL) G Lab File ID: GDJ77491A21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: 35 decanted: (Y/N) N Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/13/92

Injection Volume: 2.0(uL) Dilution Factor: 30.0

PC Cleanup: (Y/N) Y pH: 6.7

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

		<u> </u>
51-28-52,4-Dinitrophenol	36000	ซ
100-02-74-Nitrophenol	36000	ט
132-64-9Dibenzofuran	3100	עמ
121-14-22,4-Dinitrotoluene	15000	U
84-66-2Diethylphthalate	3000	עם
7005-72-34-Chlorophenyl-phenylether	15000	บ
86-73-7Fluorene	4900	עם
100-01-64-Nitroaniline	36000	ប
534-52-14,6-Dinitro-2-Methylphenol	36000	ប
86-30-6N-Nitrosodiphenylamine (1)	15000	ט
101-55-34-Bromophenyl-phenylether	15000	บ
118-74-1Hexachlorobenzene	15000	บ
87-86-5Pentachlorophenol	36000	ן ט
85-01-8Phenanthrene	52000	D
120-12-7Anthracene_	13000	DJ
86-74-8Carbazole	7900	DJ
84-74-2Di-n-Butylphthalate	15000	U
206-44-0Fluoranthene	72000	D
129-00-0Pyrene	54000	D
85-68-7Butylbenzylphthalate	15000	ប
91-94-13,3'-Dichlorobenzidine	15000	ען
56-55-3Benzo(a) Anthracene	29000	D
218-01-9Chrysene	27000	D
117-81-7bis(2-Ethylhexyl)Phthalate	2600	DJ
117-84-0Di-n-Octyl Phthalate	15000	ט
205-99-2Benzo(b)Fluoranthene	45000	DX
207-08-9Benzo(k)Fluoranthene	45000	DX
50-32-8Benzo(a) Pyrene	24000	D
193-39-5Indeno(1,2,3-cd)Pyrene	15000	D
53-70-3Dibenz(a,h)Anthracene	6000	DJ
191-24-2Benzo(g,h,i)Perylene	13000	DJ
1) Count he manuful from Binhamile in		_1

(1) - Cannot be separated from Diphenylamine

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

CHY20DL

Lab Name: COMPUCHEM.RTP

____ Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL

Lab Sample ID: <u>477491</u>

Sample wt/vol:

<u>30.5</u> (g/mL) <u>G</u>

Lab File ID:

GDJ77491A21

Level: (low/med) LOW

Date Received: 01/29/92

% Moisture: ___35 decanted: (Y/N) N__

Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL)

Date Analyzed: 02/13/92

Injection Volume: 2.0(uL)

Dilution Factor: ____30.0

GPC Cleanup: (Y/N) Y pH: 6.7

Number TICs found: 24

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
:=====================================	BLANK CONTAMINANT	7.87	6100	BJ
2.	BLANK CONTAMINANT	9.14	7600	BJ
3.	HYDROXY NAPHTHALENEDIONE	9.69	20000	J
4.	BLANK CONTAMINANT	11.20	24000	BJ
5.	UNKNOWN SILOXANE	12.05	27000	J
6.	UNKNOWN PAH	12.27	4500	Ĵ
7.	UNKNOWN PAH	12.37	12000	J
8.	UNKNOWN	12.59	7600	Ĵ
9.	UNKNOWN SILOXANE	12.84	27000	J
10.	UNKNOWN PAH	13.99	6100	Ĵ
11.	UNKNOWN PAH	14.09	4500	J
12.	UNKNOWN PAH	14.14	3000	J
13.	UNKNOWN SILOXANE	14.19	24000	J
14.	LABORATORY ARTIFACT	14.54	4500	ВЛ
15.	UNKNOWN SILOXANE	14.82	21000	J
16.	UNKNOWN SILOXANE	15.42	15000	Ĵ
17.	UNKNOWN		3000	J
18.	UNKNOWN SILOXANE	15.97 16.04	12000	Ĵ
19.	UNKNOWN	16.55	7600	J
20.	UNKNOWN	17.07	6100	Ĵ
21.	BENZO FLUORANTHENE	17.19	18000	J
22.	UNKNOWN	17.55	6100	J
23.	UNKNOWN	20.60	4500	J
24.	UNKNOWN	23.45	26000	J

1D PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CHY20

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab File ID:

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water)SOIL Lab Sample ID: 477491

Sample wt/vol: 30.40(g/ml)G

% Moisture: 35 decanted: (Y/N)N Date Received: 01/29/92

Extraction: (SepF/Cont/Sonc) SONC Date Extracted: 02/03/92

Concentrated Extract Volume: 5000(uL) Date Analyzed: 02/07/92

Injection Volume: 2.0(uL) Dilution Factor: 1

GPC Cleanup: (Y/N)Y pH: 6.7 Sulfur Cleanup: (Y/N)N

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg)UG/KG Q

 319-84-6alpha-BHC	2.6 U
319-85-7beta-BHC	1.3 JP
319-86-8delta-BHC	2.6 0
58-89-9gamma-BHC (Lindane)	
76-44-8Heptachlor	1.8 JPB
309-00-2Aldrin	
1024-57-3Heptachlor epoxide	1 2 31 TD
959-98-8Endosulfan I	2.6 U
60-57-1Dieldrin	14 P
72~55-94,4'-DDE	111
72-20-8Endrin	34 P
33213-65-9Endosulfan II	20 P
72-54-84,4'-DDD	5.0 0
1031-07-8Endosulfan sulfate	-1
50-29-34,4'-DDT	5 O I T
72-43-5Methoxychlor	12010
53494-70-5Endrin ketone	. 120 <u>FB</u>
7421-93-4Endrin aldehyde	17 P
5103-71-9alpha-Chlordane	2.6 U
5103-74-2gamma-Chlordane	2.8 P
8001-35-2Toxaphene	. <u> </u>
12674-11-2Aroclor-1016	<u>260 U</u>
11104-28-2Aroclor-1221	. <u>50</u> <u>U</u>
11141-16-5Aroclor-1232	100 U
53469-21-9Aroclor-1242	
12672-29-6Aroclor-1248	50 U
120/2-25-0AFOCIOF-1248	.
11097-69-1Aroclor-1254	[
11096-82-5Aroclor-1260	. <u>50</u> <u>U</u>
	.

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

COMPOUND

16.

EPA SAMPLE NO.

Q

Lab Name: COMPUCHEM.RTP Contract	CHY21
Lab Code: COMPU Case No.: 17744 SAS No.	: 6579HO SDG No.: CHY11
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: 477492
Sample wt/vol: 5.0 (g/mL) G	Lab File ID: GH077492A18
Level: (low/med) <u>LOW</u>	Date Received: 01/29/92
% Moisture: not dec. <u>35</u>	Date Analyzed: 01/31/92
GC Column: <u>DB624</u> ID: <u>0.530</u> (mm)	Dilution Factor:1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume:(uL)
CONCE	NTRATION UNITS:

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

74-87-3-----Chloromethane 15 U 74-83-9-----Bromomethane 15 U 75-01-4-----Vinyl Chloride 15 U 75-00-3-----Chloroethane 15 U 75-09-2----Methylene Chloride 51 В 67-64-1-----Acetone 86 В 75-15-0-----Carbon Disulfide 15 U 75-35-4----1,1-Dichloroethene 15 U 75-34-3-----1,1-Dichloroethane 15 U 540-59-0----1,2-Dichloroethene (total) 15 U 67-66-3-----Chloroform 15 U 107-06-2----1, 2-Dichloroethane U 15 78-93-3----2-Butanone 15 U 71-55-6-----1,1,1-Trichloroethane 15 Ŭ 56-23-5-----Carbon Tetrachloride 15 U 75-27-4----Bromodichloromethane 15 U 78-87-5-----1,2-Dichloropropane_ 15 U 10061-01-5----cis-1,3-Dichloropropene U 15 79-01-6-----Trichloroethene 15 U 124-48-1-----Dibromochloromethane 15 U 79-00-5----1,1,2-Trichloroethane 15 U 71-43-2-----Benzene 15 U 10061-02-6----Trans-1,3-Dichloropropene 15 U 75-25-2-----Bromoform 15 U 108-10-1----4-Methyl-2-Pentanone 15 U 591-78-6----2-Hexanone 15 U 127-18-4-----Tetrachloroethene 15 U 79-34-5-----1,1,2,2-Tetrachloroethane 15 U 108-88-3-----Toluene 15 U 108-90-7-----Chlorobenzene U 15 100-41-4-----Ethylbenzene 15 U 100-42-5----Styrene_ 15 U 1330-20-7-----Xylene (total) U 15

FORM I VOA

CAS NO.

CHY21

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477492

Sample wt/vol: 30.4 (g/mL) G Lab File ID: G2D77492A21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: ___35 decanted: (Y/N) N Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/12/92

Injection Volume: ______2.0(uL) Dilution Factor: _____5.0

GPC Cleanup: (Y/N) Y pH: 6.6

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

108-95-2Phenol	2500	U
111-44-4bis(2-Chloroethyl)Ether	2500	U
95-57-82-Chlorophenol	2500	U
541-73-11,3-Dichlorobenzene	2500	U
106-46-71.4-Dichlorobenzene	2500	ט
95-50-11,2-Dichlorobenzene	2500	ע
05-48-72-Methylphenol 108-60-12,2'-Oxybis(1-Chloropropane)	2500	ט
08-60-12,2'-0xybis(1-Chloropropane)	2500	ט
06-44-54-Methylphenol	2500	ט
106-44-5Nethylphenol	2500	U
57-72-1Hexachloroethane_	2500	U
98-95-3Nitrobenzene	2500	U
78-59-1Isophorone	2500	U
88-75-52-Nitrophenol	2500	U
105-67-92,4-Dimethylphenol	2500	U
111-91-1bis(2-Chloroethoxy)Methane	2500	ט
120-83-22,4-Dichlorophenol	2500	ט
20-82-11,2,4-Trichlorobenzene	2500	ט
1-20-3Naphthalene	2500	ט
06-47-84-Chloroaniline	2500	บ
37-68-3Hexachlorobutadiene	2500	ט
59-50-74-Chloro-3-Methylphenol	2500	ע
01-57-62-Methylnaphthalene	2500	U
77-47-4Hexachlorocyclopentadiene	2500	ן ט
88-06-22,4,6-Trichlorophenol	2500	ט
5-95-42,4,5-Trichlorophenol	6100	ע
91-58-72-Chloronaphthalene	2500	ט
88-74-42-Nitroaniline	6100	U
31-11-3Dimethyl Phthalate	2500	U
208-96-8Acenaphthylene	2500	U
506-20-22,6-Dinitrotoluene	2500	ע
9-09-23-Nitroaniline	6100	ט
33-32-9Acenaphthene	350	J

3/90

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CHY21

Q

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477492

Sample wt/vol: 30.4 (g/mL) G Lab File ID: G2D77492A21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: ___35 decanted: (Y/N) N __ Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/12/92

Injection Volume: 2.0(uL) Dilution Factor: 5.0

GPC Cleanup: (Y/N) Y pH: <u>6.6</u>

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

51-28-5----2,4-Dinitrophenol 6100 U 100-02-7----4-Nitrophenol 6100 U 132-64-9-----Dibenzofuran 2500 U

121-14-2----2,4-Dinitrotoluene 2500 U 84-66-2-----Diethylphthalate 2500 U 7005-72-3----4-Chlorophenyl-phenylether_ 2500 TT 86-73-7-----Fluorene 2500 U 100-01-6-----4-Nitroaniline 6100 U 534-52-1----4,6-Dinitro-2-Methylphenol_ 6100 U 86-30-6----N-Nitrosodiphenylamine (1) 2500 U 101-55-3----4-Bromophenyl-phenylether 2500 U 118-74-1-----Hexachlorobenzene 2500 87-86-5----Pentachlorophenol 6100 85-01-8-----Phenanthrene 3500 120-12-7-----Anthracene_ 920 86-74-8-----Carbazole 710 J 84-74-2----Di-n-Butylphthalate 2500 U 206-44-0----Fluoranthene_ 8800 129-00-0----Pyrene 3500 85-68-7-----Butylbenzylphthalate 470 J 91-94-1----3,3'-Dichlorobenzidine 2500 U 56-55-3----Benzo(a)Anthracene_ 4500 218-01-9-----Chrysene 3800 117-81-7-----bis(2-Ethylhexyl)Phthalate_ 2500 U 117-84-0-----Di-n-Octyl Phthalate_ U 2500 205-99-2----Benzo(b) Fluoranthene 11000 Х 207-08-9----Benzo(k)Fluoranthene X 11000 50-32-8-----Benzo(a) Pyrene 6900 193-39-5----Indeno(1,2,3-cd)Pyrene 3800 53-70-3-----Dibenz(a,h)Anthracene____ 1700

(1) - Cannot be separated from Diphenylamine

191-24-2----Benzo(g,h,i)Perylene_

FORM I SV-2

3500

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

CHY21

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

SDG No.: CHY11

Matrix: (soil/water) SOIL

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO

Lab Sample ID: 477492

Sample wt/vol:

<u>30.4</u> (g/mL) <u>G</u>

Lab File ID:

G2D77492A21

Level: (low/med) LOW

Date Received: 01/29/92

% Moisture: ___35 decanted: (Y/N) N___

Date Extracted: 02/04/92

Date Analyzed: 02/12/92

Injection Volume: _____2.0(uL)

Dilution Factor: _____5.0

FPC Cleanup: (Y/N) Y pH: <u>6.6</u>

Concentrated Extract Volume: 500.0 (uL)

Number TICs found: 21

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	ALDOL	4.80	1500	ABJ
2.	UNKNOWN PAH	12.45	500	J
3.	UNKNOWN	16.45	500	J
4.	UNKNOWN	16.67	760	J
5.	UNKNOWN	17.04	1300	J
6.	UNKNOWN	17.20	1000	J
7.	UNKNOWN	17.25	1000	J
8.	UNKNOWN PAH	17.34	5000	J
9.	UNKNOWN	17.90	760	J
10.	UNKNOWN	17.95	1000	J
11.	UNKNOWN	18.07	1000	J
12.	UNKNOWN	18.14	1500	J
13.	UNKNOWN	18.22	500	J
14.	UNKNOWN	18.75	1500	J
15.	UNKNOWN	18.80	1000	J
16.	UNKNOWN	19.45	500	J
17.	UNKNOWN	19.50	500	J
18.	UNKNOWN	19.55	1000	J
19.	UNKNOWN	23.39	1800	J
20.	UNKNOWN	23.42	1000	J
21.	UNKNOWN	23.45	760	J

VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: COMPUCHEM.RTP	Chy22 Contract: 68D10083	
Lab Code: COMPU Case No.:	17744 SAS No.: 6579HO SDG No.: CHY11	_
Matrix: (soil/water) <u>SOIL</u>	Lab Sample ID: 477493	
Sample wt/vol:	mL) G Lab File ID: GH077493A18	-
Level: (low/med) LOW	Date Received: 01/29/92	

Level: (low/med) LOW ___

Date Analyzed: 01/31/92

% Moisture: not dec. __20

. . 191

Dilution Factor: _____1.0

GC Column: DB624 ID: 0.530 (mm) Soil Extract Volume: _____ (uL)

Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NO.	COMPOUND	(ug/L or u	g/Kg) <u>UG/KG</u>	Q
74-87-3	Chloromethane		12	U
	Bromomethane		12	U
75-01-4	Vinyl Chloride	e	12	שׁ
75-00-3	Chloroethane		_ 12	U
75-09-2	Methylene $Ch\overline{1}c$	oride	~ 56	В
	Acetone		_ 61	В
75-15-0	Carbon Disulf:	ide	12	ט
75-35-4	1,1-Dichloroe	thene	12	ប
	1,1-Dichloroe		_ 12	\ี่บ
	1,2-Dichloroe	thene (total)_	12	U
	Chloroform			טן
	1,2-Dichloroe	thane	12	ן ט
	2-Butanone		12	υ
71-55-6	1,1,1-Trichlo	roethane	12	ט
56-23-5	Carbon Tetracl	hloride	12	ט
75-27-4	Bromodichloro	methane	12	ט
78-87-5	1,2-Dichlorop	ropane	12	U
10061-01-5-	cis-1,3-Dichlo	oropropene	_ 12	ַ ט
79-01-6	Trichloroethe	ne	12	U
124-48-1	Dibromochloro	methane	12	ט
79-00-5	1,1,2-Trichlo	roethane	12	ַ ט
	Benzene		12	ប
10061-02-6-	Trans-1,3-Dicl	nloropropene		ע
75-25-2	Bromoform		12	lυ
108-10-1	4-Methyl-2-Pe	ntanone	_ 12	ប
591-78-6	2-Hexanone		12	U
127-18-4	Tetrachloroetl	hene	12	U
	1,1,2,2-Tetra		12	U
108-88-3	Toluene		12	ט
108-90-7	Chlorobenzene		12	ប
100-41-4	Ethylbenzene_		12	ן ט
.			12	ប
1330-20-7	Styrene Xylene (total)		12	Ū

FORM I VOA

17744 CHY 11

3/90

CHY22

Lab Name: COMPUCHEM, RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: <u>477493</u>

Sample wt/vol: 30.5 (g/mL) G Lab File ID: GRJ77493A21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: ____20 decanted: (Y/N) N___ Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/12/92

Injection Volume: 2.0(uL) Dilution Factor: _____1.0

GPC Cleanup: (Y/N) Y pH: 6.4

CONCENTRATION UNITS: COMPOUND CAS NO. (ug/L or ug/Kg) <u>UG/KG</u> Q

111-44-4bis(2-Chloroethyl)Ether 95-57-82-Chlorophenol 541-73-11,3-Dichlorobenzene 106-46-71,4-Dichlorobenzene	410 410	ט
541-73-11,3-Dichlorobenzene 106-46-71,4-Dichlorobenzene		
106-46-71,4-Dichlorobenzene		ע
106-46-71,4-Dichlorobenzene	410	ט
	410	ט
95-50-11,2-Dichlorobenzene	410	ט
95-48-72-Methylphenol 108-60-12,2'-Oxybis(1-Chloropropane)	410	U
108-60-12,2'-Oxybis(1-Chloropropane)	410	ប
106-44-54-Methylphenol	410	ប
621-64-7N-Nitroso-Di-n-Propylamine	410	U
67-72-1Hexachloroethane	410	ן ט
98-95-3Nitrobenzene	410	บ
78-59-1Isophorone	410	บ
88-75-52-Nitrophenol	410	ប
105-67-92,4-Dimethylphenol	410	ט
111-91-1bis(2-Chloroethoxy)Methane	410	ប
120-83-22,4-Dichlorophenol	410	U
120-82-11,2,4-Trichlorobenzene	410	ט
91-20-3Naphthalene	59	J
106-47-84-Chloroaniline	410	ט
87-68-3Hexachlorobutadiene	410	ד
59-50-74-Chloro-3-Methylphenol	410	U
91-57-62-Methylnaphthalene	75	J
77-47-4Hexachlorocyclopentadiene	410	ט
88-06-22,4,6-Trichlorophenol	410	U
95-95-42,4,5-Trichlorophenol	980	ט
91-58-72-Chloronaphthalene	410	ע
88-74-42-Nitroaniline	980	ע
131-11-3Dimethyl Phthalate	410	U
208-96-8Acenaphthylene	410	U
606-20-22,6-Dinitrotoluene	410	[ซ
99-09-23-Nitroaniline	980	ប
83-32-9Acenaphthene	410	ש

ane to the second

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

				CHY22
Lab Name: COM	PUCHEM.RTP	Contract:	68D10083	

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HQ SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: <u>477493</u>

Sample wt/vol: 30.5 (g/mL) G Lab File ID: GRJ77493A21

Level: (low/med) <u>LOW</u> Date Received: 01/29/92

% Moisture: 20 decanted: (Y/N) N Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/12/92

Dilution Factor: _____1.0 Injection Volume: 2.0(uL)

GPC Cleanup: (Y/N) <u>Y</u> pH: <u>6.4</u>

CONCENTRATION UNITS: COMPOUND CAS NO. (ug/L or ug/Kg) <u>UG/KG</u>

]	1
51-28-52,4-Dinitrophenol	980	บ
100-02-74-Nitrophenol	980	U
132-64-9Dibenzofuran	410	ប
121-14-22,4-Dinitrotoluene	410	ប
84-66-2Diethylphthalate	410	ប
7005-72-34-Chlorophenyl-phenylether	410	ប
86-73-7Fluorene	410	ไซ
100-01-64-Nitroaniline	980	U
534-52-14,6-Dinitro-2-Methylphenol	980	ן ט
86-30-6N-Nitrosodiphenylamine (1)	410	ן ט
101-55-34-Bromophenyl-phenylether	410	ט
118-74-1Hexachlorobenzene	410	ע
87-86-5Pentachlorophenol	980	ן ט
85-01-8Phenanthrene	370	J
120-12-7Anthracene	55	J
86-74-8Carbazole	68	J
84-74-2Di-n-Butylphthalate	410	lυ
206-44-0Fluoranthene	1100	
129-00-0Pyrene	530	
85-68-7Butylbenzylphthalate	410	∫ប
91-94-13,3'-Dichlorobenzidine	410	ט
56-55-3Benzo(a) Anthracene	410	1
218-01-9Chrysene	440	
117-81-7bis(2-Ethylhexyl)Phthalate	410	ט
117-84-0Di-n-Octyl Phthalate	410	ט
205-99-2Benzo(b) Fluoranthene	1200	İΧ
207-08-9Benzo(k)Fluoranthene	1200	X
50-32-8Benzo(a) Pyrene	380	J
193-39-5Indeno(1,2,3-cd)Pyrene	450	
53-70-3Dibenz(a,h)Anthracene	98	J
191-24-2Benzo(g,h,i) Perylene	350	J
		1

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

1F

EPA SAMPLE NO.

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CHY22

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477493

Sample wt/vol: 30.5 (g/mL) G Lab File ID: GRJ77493A21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: _____20 decanted: (Y/N) N____ Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/12/92

Injection Volume: 2.0(uL) Dilution Factor: 1.0

FPC Cleanup: (Y/N) Y pH: 6.4

Number TICs found: 21 CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN	4.22	410	J
2.	UNKNOWN ALKENE	4.35	570	J
3.	UNKNOWN ALKENE	4.50	4500	J
4.	UNKNOWN	4.62	820	J
5.	UNKNOWN	4.70	2000	J
6.	ALDOL	4.83	980	ABJ
7.	UNKNOWN	4.98	410	J
8.	UNKNOWN	5.07	570	J
9.	UNKNOWN	5.30	2600	J
10.	UNKNOWN	5.95	1400	J
11.	UNKNOWN	8.27	160	J
12.	UNKNOWN	16.10	160	J
13.	UNKNOWN	16.60	200	J
14.	UNKNOWN	17.22	570	J
15.	UNKNOWN	17.25	370	J
16.	UNKNOWN PAH	17.37	530	J
17.	UNKNOWN	18.32	330	J
18.	UNKNOWN	18.84	410	J
19.	UNKNOWN	18.89	570	J
20.	UNKNOWN	21.54	700	J
21.	UNKNOWN SILOXANE	23.45	250	J

(Red)SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CHY22RE

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477493

Sample wt/vol: 30.3 (g/mL) G Lab File ID: GRJ77493A05

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: ____20 decanted: (Y/N) N ____ Date Extracted: 02/14/92

Concentrated Extract Volume: 500,0 (uL) Date Analyzed: 02/24/92

Injection Volume: 2.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y pH: 6.4

CAS NO. COMPOUND CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG Q

108-95-2----Phenol 410 T 111-44-4-----bis(2-Chloroethyl)Ether___ U 410 95-57-8----2-Chlorophenol 410 U 541-73-1----1,3-Dichlorobenzene_ 410 U 106-46-7----1,4-Dichlorobenzene U 410 95-50-1----1,2-Dichlorobenzene 410 U 95-48-7----2-Methylphenol 410 U 108-60-1----2,2'-Oxybis(1-Chloropropane) U 410 106-44-5-----4-Methylphenol U 410 621-64-7----N-Nitroso-Di-n-Propylamine 410 U 67-72-1-----Hexachloroethane___ U 410 98-95-3-----Nitrobenzene_ 410 U 78-59-1-----Isophorone 410 U 88-75-5----2-Nitrophenol 410 U 105-67-9----2,4-Dimethylphenol 410 TT 111-91-1----bis(2-Chloroethoxy)Methane U 410 120-83-2----2,4-Dichlorophenol 410 U 120-82-1----1,2,4-Trichlorobenzene_ 410 U 91-20-3-----Naphthalene J 71 106-47-8----4-Chloroaniline 410 U 87-68-3-----Hexachlorobutadiene 410 U 59-50-7----4-Chloro-3-Methylphenol 410 U 91-57-6----2-Methylnaphthalene 57 J 77-47-4----Hexachlorocyclopentadiene 410 U 88-06-2----2,4,6-Trichlorophenol_ 410 U 95-95-4----2,4,5-Trichlorophenol 990 U 91-58-7----2-Chloronaphthalene 410 U 88-74-4----2-Nitroaniline 990 U 131-11-3-----Dimethyl Phthalate_ 410 U 208-96-8-----Acenaphthylene U 410 606-20-2----2,6-Dinitrotoluene__ U 410 99-09-2----3-Nitroaniline U 990 83-32-9-----Acenaphthene 150 J

3/90

Mathie

CHY22RE

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477493

Sample wt/vol: 30.3 (g/mL) G Lab File ID: GRJ77493A05

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: 20 decanted: (Y/N) N Date Extracted: 02/14/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/24/92

Injection Volume: 2.0(uL) Dilution Factor: 1.0

PC Cleanup: (Y/N) Y pH: <u>6.4</u>

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

51-28-5----2,4-Dinitrophenol _____ 990 U 100-02-7----4-Nitrophenol 990 U 132-64-9-----Dibenzofuran 61 J· 121-14-2----2,4-Dinitrotoluene 410 U 84-66-2----Diethylphthalate U 410 7005-72-3----4-Chlorophenyl-phenylether 410 U 86-73-7-----Fluorene 89 J 100-01-6----4-Nitroaniline 990 U 534-52-1----4,6-Dinitro-2-Methylphenol 990 U 86-30-6----N-Nitrosodiphenylamine (1)____ 410 U 101-55-3----4-Bromophenyl-phenylether 410 U 118-74-1-----Hexachlorobenzene U 410 87-86-5-----Pentachlorophenol 990 U 85-01-8-----Phenanthrene 900 120-12-7-----Anthracene 150 J 86-74-8-----Carbazole 120 J 84-74-2----Di-n-Butylphthalate 410 U 206-44-0----Fluoranthene 1500 129-00-0-----Pyrene_ 1300 85-68-7-----Butylbenzylphthalate 410 U 91-94-1----3,3'-Dichlorobenzidine 410 U 56-55-3-----Benzo(a)Anthracene 730 218-01-9-----Chrysene 880 117-81-7----bis(2-Ethylhexyl)Phthalate___ 66 J 117-84-0-----Di-n-Octyl Phthalate U 410 205-99-2----Benzo(b) Fluoranthene 1600 207-08-9----Benzo(k)Fluoranthene 570 50-32-8-----Benzo(a) Pyrene 550 193-39-5----Indeno(1,2,3-cd)Pyrene___ 970 53-70-3-----Dibenz(a,h)Anthracene___ 180 J 191-24-2----Benzo(g,h,i)Perylene_ 810

(1) - Cannot be separated from Diphenylamine

1F SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

CHY22RE

Lab Name: COMPUCHEM.RTP

_____ Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

William .

Matrix: (soil/water) SOIL

Lab Sample ID: 477493

Sample wt/vol: 30.3 (g/mL) G___

Lab File ID:

GRJ77493A05

Level: (low/med) LOW__

Date Received: 01/29/92

% Moisture: <u>20</u> decanted: (Y/N) N

Date Extracted: 02/14/92

Concentrated Extract Volume: 500.0 (uL)

Date Analyzed: 02/24/92

Injection Volume: 2.0(uL)

Dilution Factor: _____1.0

GPC Cleanup: (Y/N) Y pH: <u>6.4</u>

Number TICs found: 23

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	SOLVENT CONTAMINANT	5.37	210	BJ
2.	UNKNOWN	5.67	450	J
3.	UNKNOWN ALKENE	5.72	330	3
4.	UNKNOWN ALKENE	5.85	2800	J
5.	UNKNOWN	5.88	370	J
6.	TETRACHLOROETHANE	6.02	1000	J
7.	UNKNOWN	6.08	540	J
8.	UNKNOWN	6.17	290	J
9.	ALDOL	6.22	660	ABJ
10.	ALDOL	6.33	370	ABJ
11.	UNKNOWN	6.42	740	J
12.	UNKNOWN	6.62	2000	J
13.	UNKNOWN SILOXANE	6.95	160	J
14.	UNKNOWN	7.30	1000	J
15.	UNKNOWN	8.18	160	J
16.	UNKNOWN	8.54	160	J
17.	UNKNOWN PAH	13.70	160	J
18.	UNKNOWN PNA	13.97	82	J
19.	UNKNOWN PAH	15.25	120	J
20.	UNKNOWN PAH	15.35	120	J
21.	UNKNOWN	17.67	210	J
22.	UNKNOWN	19.74	1100	J
23.	UNKNOWN PAH	20.45	910	J

CHY22

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: <u>17744</u> SAS No.: <u>6579HO</u> SDG No.: <u>CHY11</u>

Matrix: (soil/water)SOIL Lab Sample ID: <u>477493</u>

Sample wt/vol:

30.30(g/m1)G

Lab File ID:

% Moisture: 20 decanted: (Y/N)N

Date Received: 01/29/92

Extraction: (SepF/Cont/Sonc)

SONC

Date Extracted: 02/03/92

Concentrated Extract Volume: 5000(uL)

Date Analyzed: 02/08/92

Injection Volume: 2.0(uL)

Dilution Factor: 1

GPC Cleanup: (Y/N)Y

рН:<u>6.4</u>

Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg)UG/KG Q

	
319-84-6alpha-BHC	2.1 U
319-85-7beta-BHC	2.1
319-86-8delta-BHC	2.1
58-89-9gamma-BHC (Lindane)	-)
76-44-8Heptachlor	$\frac{2.1}{\overline{U}}$
309-00-2Aldrin	2.1
1024-57-3Heptachlor epoxide	
959-98-8Endosulfan I	- <u>2 · 1 U</u>
60-57-1Dieldrin	- <u>6.2</u> P
72-55-94,4'-DDE	-! <u>1.6</u> <u>J</u>
72-20-8Endrin	$-\frac{4\cdot 1}{2}$
33213-65-9Endosulfan II	
72-54-84,4'-DDD	<u> 4.1 U </u>
1031-07-8Endosulfan sulfate	4.1 U
50-29-34,4'-DDT	<u>2.3 JP</u>
72-43-5Methoxychlor	26 <u>PB</u>
53494-70-5Endrin ketone	0.66 JP
7421-93-4Endrin aldehyde	
5103-71-9alpha-Chlordane	3.5 P
5103-74-2gamma-Chlordane	2.1 P
8001-35-2Toxaphene	210 U
12674-11-2Aroclor-1016	41 U
11104-28-2Aroclor-1221	83 U
11141-16-5Aroclor-1232	41 U
53469-21-9Aroclor-1242	41 U
12672-29-6Aroclor-1248	41 U
11097-69-1Aroclor-1254	41 0
11096-82-5Aroclor-1260	41 U
	-

GRIGINAS (Red)

CAS NO.

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

COMPOUND

EPA	SAMPLE	NO.
------------	--------	-----

					CHY23	
Lab	Name:	COMPUCHEM, RTP	Contract:	68D10083		

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477494

Sample wt/vol: 5.0 (g/mL) G Lab File ID: GH077494C18

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: not dec. 22
Date Analyzed: 02/03/92

GC Column: DB624 ID: 0.530 (mm) Dilution Factor: 1.0

Soil Extract Volume: _____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

4-87-3Chloromethane		υ
4-83-9Bromomethane		U
5-01-4Vinyl Chloride	13	ט
'5-00-3Chloroethane	13	ט
5-09-2Methylene Chloride	68	В
57-64-1Acetone	37	В
5-15-0Carbon Disulfide	13	ן ט
'5-35-41,1-Dichloroethene	13	ט
5-34-31,1-Dichloroethane		ע
5-34-31,1-Dichloroethane 40-59-01,2-Dichloroethene (total	.) 13	ט
57-66-3Chloroform	13	ט
.07-06-21,2-Dichloroethane	13	ע
/8-93-32-Butanone	13	ע
1-55-61,1,1-Trichloroethane	13	ט
6-23-5Carbon Tetrachloride		ט
5-27-4Bromodichloromethane		U
/8-87-51,2-Dichloropropane	13	Ū
.0061-01-5cis-1,3-Dichloropropene	13	ן ט
9-01-6Trichloroethene	13	ט
.24-48-1Dibromochloromethane	13	ע
9-00-51,1,2-Trichloroethane	13	ע
1-43-2Benzene	13	ַ ט
.0061-02-6Trans-1,3-Dichloropropene	13	U
/5-25-2Bromoform		U
08-10-14-Methyl-2-Pentanone	13	ប
591-78-62-Hexanone	13	ע
.27-18-4Tetrachloroethene		ט
9-34-51,1,2,2-Tetrachloroethane	13	ט
08-88-3Toluene	13	ע
.08-90-7Chlorobenzene	13	U
.00-41-4Ethylbenzene	13	U
.00-42-5Styrene		U
.330-20-7Xylene (total)_	13	ט

FORM I VOA

CHY23

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) <u>SOIL</u> Lab Sample ID: <u>477494</u>

Sample wt/vol: 30.5 (g/mL) G Lab File ID: G2J77494A21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: 22 decanted: (Y/N) N Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/12/92

Injection Volume: 2.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y pH: 6.6

CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

108-95-2Phenol	420	U
111-44-4bis(2-Chloroethyl)Ether	420	ี่บิ
95-57-82-Chlorophenol	420	lυ
541-73-11.3-Dichlorobenzene	420	U
106-46-71,4-Dichlorobenzene	420	U
95-50-11,2-Dichlorobenzene	420	ט
	420	ט
108-60-12.2'-0xvbis(1-Chloropropane)	420	ט
106-44-54-Methylphenol	420	U
106-44-54-Methylphenol621-64-7Nitroso-Di-n-Propylamine	420	U
67-72-1Hexachloroethane	420	ט
98-95-3Nitrobenzene	420	ט
78-59-1Isophorone	420	ט
88-75-52-Nitrophenol	420	ט
105-67-92,4-Dimethylphenol 111-91-1bis(2-Chloroethoxy)Methane	420	U
111-91-1bis(2-Chloroethoxy)Methane	420	שׁ
120-83-22,4-Dichlorophenol	420	ט
120-82-11,2,4-Trichlorobenzene	420	ט
91-20-3Naphthalene	420	ע
106-47-84-Chloroaniline	420	ע
87-68-3Hexachlorobutadiene	420	ע
59-50-74-Chloro-3-Methylphenol	420	ע
91-57-62-Methylnaphthalene	420	ט
77-47-4Hexachlorocyclopentadiene	420	ע
88-06-22,4,6-Trichlorophenol	420	ט
95-95-42,4,5-Trichlorophenol	1000	ט
91-58-72-Chloronaphthalene	420	ַט
88-74-42-Nitroaniline	1000	U
131-11-3Dimethyl Phthalate	420	ט
208-96-8Acenaphthylene	420	ַ
606-20-22,6-Dinitrotoluene	420	ש
99-09-23-Nitroaniline	1000	ש
33-32-9Acenaphthene	420	ש
· · · · · · · · · · · · · · · · · · ·	l	- I ———

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

Light China War.

EPA SAMPLE NO.

CHY23

_____ Contract: 68D10083 Lab Name: COMPUCHEM.RTP

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Lab Sample ID: Matrix: (soil/water) <u>SQIL</u> 477494

Sample wt/vol: 30.5 (g/mL) G Lab File ID: G2J77494A21

Level: (low/med) LOW___ Date Received: <u>01/29/92</u>

% Moisture: 22 decanted: (Y/N) N_ Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/12/92

Injection Volume: _____2.0(uL) Dilution Factor: _____1.0

GPC Cleanup: (Y/N) Y___ рН: <u>6.6</u> CONCENTRATION UNITS:

> CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u>

	7. 3. ———	
51-28-52,4-Dinitrophenol	1000	ט
100-02-74-Nitrophenol	1000	U
132-64-9Dibenzofuran	420	ש
121-14-22,4-Dinitrotoluene	420	U
	54	J
7005-72-34-Chlorophenyl-phenylether	420	្រប
36-73-7Fluorene	420	ט
100-01-64-Nitroaniline	1000	ט
534-52-14,6-Dinitro-2-Methylphenol	1000	ט
36-30-6N-Nitrosodiphenylamine (1)	420	ប
101-55-34-Bromophenyl-phenylether	420	ט
118-74-1Hexachlorobenzene	420	ប
87-86-5Pentachlorophenol	1000	שׁ
35-01-8Phenanthrene	420	ט
120-12-7Anthracene	420	ប
36-74-8Carbazole	420	ט
34-74-2Di-n-Butylphthalate	420	U
206-44-0Fluoranthene	79	J
129-00-0Pyrene	63	J
35-68-7Butylbenzylphthalate	420	ប
91-94-13,3'-Dichlorobenzidine	420	ט
56-55-3Benzo(a) Anthracene	420	lυ
218-01-9Chrysene	44	J
117-81-7bis(2-Ethylhexyl)Phthalate	420	U
117-84-0Di-n-Octyl Phthalate	420	U
205-99-2Benzo(b) Fluoranthene	84	ÌJΧ
207-08-9Benzo(k) Fluoranthene	84	JХ
50-32-8Benzo(a) Pyrene 193-39-5Indeno(1,2,3-cd) Pyrene	420	U
193-39-5Indeno(1,2,3-cd)Pyrene	420	ับ
53-70-3Dibenz(a,h)Anthracene	420	ט
191-24-2Benzo(g,h,i)Perylene	420	U
		1

(1) - Cannot be separated from Diphenylamine

FORM I SV-2

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

CHY23

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL

Sample wt/vol: 30.5 (g/mL) G

Lab File ID: <u>G2J77494A21</u>

Level: (low/med) LOW

Date Received: 01/29/92

% Moisture: ____22 decanted: (Y/N) N____ Date Extracted: 02/04/92

Lab Sample ID: 477494

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/12/92

Dilution Factor: _____1.0

Injection Volume: _____2.0(uL)

PC Cleanup: (Y/N) Y pH: 6.6

Number TICs found: 29

CONCENTRATION UNITS: (ug/L or ug/Kg) <u>UG/KG</u>

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN	4.40	290	\ J
2.	UNKNOWN	4.62	590	J
3.	ALDOL	4.77	500	ABJ
4.	ALDOL	4.88	210	ЪJ
5.	BENZALDEHYDE + UNKNOWN	4.98	84	J
6.	ALDOL	5.20	970	AJ
7.	ALDOL	5.38	130	AJ
8.	UNKNOWN	5.85	1300	J
9.	BLANK CONTAMINANT	9.12	130	BJ
10.	BLANK CONTAMINANT	10.24	210	BJ
11.	BLANK CONTAMINANT	11.19	340	BJ
12.	UNKNOWN SILOXANE	12.05	420	J
13.	UNKNOWN	12.22	84	J
14.	UNKNOWN	12.27	210	J
15.	UNKNOWN CARBOXYLIC ACID	12.32	340	J
16.	UNKNOWN	12.59	130	J
17.	UNKNOWN SILOXANE	12.84	340	J
18.	BLANK CONTAMINANT	13.54	800	BJ
19.	UNKNOWN SILOXANE	14.19	590	J
20.	LABORATORY ARTIFACT	14.54	210	BJ
21.	UNKNOWN SILOXANE	14.82	500	J
22.	UNKNOWN	15.07	170	J
23.	UNKNOWN SILOXANE	15.42	380	J
24.	UNKNOWN SILOXANE	16.02	550	J
25.	UNKNOWN	16.70	630	J
26.	UNKNOWN	17.05	930	J
27.	UNKNOWN	17.15	420	J
28.	UNKNOWN	18.65	2200	J
29.	UNKNOWN	21.25	880	J

CHY23

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

SONC

Matrix: (soil/water)SOIL

Lab Sample ID: <u>477494</u>

Sample wt/vol:

30.30(g/m1)G

Lab File ID:

% Moisture: 22 decanted: (Y/N)N

Date Received: <u>01/29/92</u>

Extraction: (SepF/Cont/Sonc)

 $i \in I$ 264

Date Extracted: 02/03/92

Concentrated Extract Volume: 5000(uL)

Date Analyzed: <u>02/08/92</u>

Injection Volume: 2.0(uL)

Dilution Factor: 1

GPC Cleanup: (Y/N)Y

CAS NO.

pH:<u>6.6</u>

COMPOUND

Sulfur Cleanup: (Y/N) N

CONCENTRATION UNITS: (ug/L or ug/Kg)UG/KG

Q

319-84-6	alpha-BHC	2.2 U
319-85-7	beta-BHC	0.87 JP
319-86-8	delta-BHC	2.2 U
58-89-9	gamma-BHC (Lindane)	1 2.2 U
76-44-8	Heptachlor	I 0.231JPB
309-00-2	Aldrin	2.2 U
1024-57-3	Aldrin Heptachlor epoxide	1 2.2 U
959-98-8	Endosulfan I	_
60-57-1	Dieldrin	_ 4.2 <u>U</u>
72-55-9	4,4'-DDE	_ 4.2 <u>U</u>
72-20-8	Endrin	_l1.4 J
33213-65-9	Endosulfan II	0.41 <u>JP</u>
72-54-8	4,4'-DDD	_l4.2 U
1031-07-8	Endosulfan sulfate	I 4.21U
50-29-3	4,4'-DDT	1 4.2 U
72-43-5	4,4'-DDT	1.4 JPB
53494-70-5	Endrin ketone	_ <u>4.2 Ŭ</u>
7421-93-4	Endrin aldehyde	0.68 JP
5103-71-9	alpha-Chlordane	2,2 U
5103-74-2	gamma-Chlordane	_
8001-35-2	Toxaphene	_ 220 U
12674-11-2	Aroclor-1016	42 U
11104-28-2	Aroclor-1221	_ 85 <u>U</u>
11141-16-5	Aroclor-1232	_ <u>42 U</u>
53469-21-9	Aroclor-1242	_ 42 <u>U</u>
12672-29-6	Aroclor-1248	42 U
11097-69-1	Aroclor-1254	_ 42 U
	Aroclor-1260	42 U

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Date Analyzed: 02/03/92

Lab Name: COMPUCHEM.RTP	Contract: 68D10083	CH124
Lab Code: COMPU Case No.: 17744	SAS No.: <u>6579HO</u> SDG	No.: CHY02
Matrix: (soil/water) WATER_	Lab Sample ID:	477467
Sample wt/vol: $\underline{5.0}$ (g/mL) $\underline{\text{ML}}$	Lab File ID:	CR077467C51
Level: (low/med) LOW	Date Received:	01/29/92

GC Column: DB-624 ID: 0.530 (mm) Dilution Factor: 1.0

Soil Extract Volume: _____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:
(ug/L or ug/Kg) UG/L Q

74-87-3Chloromethane	10	υ
74-83-9Bromomethane	10	ט
75-01-4Vinyl Chloride	10	ש
75-00-3Chloroethane	10	ט
75-09-2Methylene Chloride	160	В
67-64-1Acetone	10	ט
75-15-0Carbon Disulfide	10	ט
75-35-41,1-Dichloroethene	10	lυ
75-34-31,1-Dichloroethane	10	Ū
540-59-01,2-Dichloroethene (total)	10	U
67-66-3Chloroform	10	U
107-06-21,2-Dichloroethane	10	ן ט
78-93-32-Butanone	10	ប
71-55-61,1,1-Trichloroethane	10	ַ
56-23-5Carbon Tetrachloride	10	ַ
75-27-4Bromodichloromethane	10	ן ט
78-87-51,2-Dichloropropane	10	U
10061-01-5cis-1.3-Dichloropropene	10	U
79-01-6Trichloroethene	10	U
124-48-1Dibromochloromethane	10	∖ט
79-00-51,1,2-Trichloroethane	10	U
71-43-2Benzene	10	ע
10061-02-6Trans-1,3-Dichloropropene	10	ט
75-25-2Bromoform	10	U
108-10-14-Methyl-2-Pentanone	10	U
591-78-62-Hexanone	10	U
127-18-4Tetrachloroethene	10	ע
79-34-51,1,2,2-Tetrachloroethane	10	טן
108-88-3Toluene	10	ע
108-90-7Chlorobenzene	10	U
100-41-4Ethylbenzene	10	U
100-42-5Styrene	10	U
1330-20-7Xylene (total)	10	U

% Moisture: not dec. ____

FINGE TO STATE

Number TICs found: 0

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

		OUV2 A
Lab Name: COMPUCHEM.RTP	Contract: 68D10083	CHY24
Lab Code: COMPU Case No.: 17744	SAS No.: <u>6579HO</u> SDG	No.: CHY02
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID:	477467
Sample wt/vol:5.0 (g/mL) ML	Lab File ID:	CR077467C51
Level: (low/med) LOW	Date Received:	01/29/92
Moisture: not dec	Date Analyzed:	02/03/92
GC Column: <u>DB-624</u> ID: <u>0.530</u> (mm)	Dilution Factor	1.0
Soil Extract Volume: (uL)	Soil Aliquot Vo	lume:(uL)
	CONCENTRATION UNITS:	

1				
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
			******	=====
]		

(ug/L or ug/Kg) <u>UG/L</u>

Lab Name: COMPUCHEM.RTP Contract: 68D10083	CHY24
Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO	SDG No.: CHY02
Matrix: (soil/water) <u>WATER</u> Lab Sample	ID: <u>477467</u>
Sample wt/vol: 1000 (g/mL) ML Lab File II	GH077467A07
Level: (low/med) LOW Date Receive	red: <u>01/29/92</u>
<pre>% Moisture: decanted: (Y/N) Date Extract</pre>	ted: <u>01/31/92</u>
Concentrated Extract Volume: 1000 (uL) Date Analyz	ed: <u>02/04/92</u>
Injection Volume: 2.0(uL) Dilution Fa	actor:1.0
'PC Cleanup: (Y/N) N_ pH:	
CONCENTRATION U	
CAS NO. COMPOUND (ug/L or ug/Kg)	<u>UG/L</u> Q
108-95-2Phenol	10 U
111-44-4bis(2-Chloroethyl)Ether	10 0
95-57-82-Chlorophenol	10 0
541-73-11,3-Dichlorobenzene	10 U
106-46-71,4-Dichlorobenzene	10 U
95-50-11,2-Dichlorobenzene	10 U
95-48-72-Methylphenol	10 U
108-60-12,2'-Oxybis(1-Chloropropane)_	10 U
106-44-54-Methylphenol	10 U
621-64-7N-Nitroso-Di-n-Propylamine	10 U
67-72-1Hexachloroethane	10 U
98-95-3Nitrobenzene	10 U
78-59-1Isophorone 88-75-52-Nitrophenol	10 U
105-67-92,4-Dimethylphenol	10 U 10 U
111-91-1bis(2-Chloroethoxy)Methane	10 0
120-83-22,4-Dichlorophenol	10 U
120-82-11,2,4-Trichlorobenzene	10 U
91-20-3Naphthalene	10 U
106-47-84-Chloroaniline	10 U
87-68-3Hexachlorobutadiene	10 U
59-50-74-Chloro-3-Methylphenol	10 U
91-57-62-Methylnaphthalene	10 U
77-47-4Hexachlorocyclopentadiene	10 U
88-06-22,4,6-Trichlorophenol	10 U
95-95-42,4,5-Trichlorophenol	25 U
91-58-72-Chloronaphthalene	10 0
88-74-42-Nitroaniline	25 U
131-11-3Dimethyl Phthalate	10 U
208-96-8Acenaphthylene	10 U
606-20-22,6-Dinitrotoluene 99-09-23-Nitroaniline	10 U 25 U
33-03-23-NICLOGUITINE	25 U

83-32-9-----Acenaphthene_

3/90

10

U

4,410

Lab Name: COMPUCHEM.	RTP	Contract: 68D10083	CHY24
Lab Code: COMPU		SAS No.: 6579HO SD	***************************************
Matrix: (soil/water)	WATER	Lab Sample ID	: 477467
Sample wt/vol:	1000 (g/mL) ML	Lab File ID:	GH077467A07

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: ____ decanted: (Y/N) ___ Date Extracted: 01/31/92

Concentrated Extract Volume: 1000 (uL) Date Analyzed: 02/04/92

Injection Volume: _____2.0(uL) Dilution Factor: ____1.0

GPC Cleanup: (Y/N) N__ pH: ____ CONCENTRATION UNITS:

CAS NO. COMPOUND (ug/L or ug/Kg) UG/L

51-28-52,4-Dinitrophenol	25	U
100-02-74-Nitrophenol	25	บ
132-64-9Dibenzofuran	10	บ
121-14-22,4-Dinitrotoluene		ប
84-66-2Diethylphthalate	10	u
7005-72-34-Chlorophenyl-phenylether_	i	Ü
86-73-7Fluorene	10	ប
100-01-6A-Nitroaniline	25	บ็
534-52-14,6-Dinitro-2-Methylphenol	25	Ū
86-30-6N-Nitrosodiphenylamine (1)	10	บั
101-55-34-Bromophenyl-phenylether	10	υ
118-74-1Hexachlorobenzene	10	บ
87-86-5Pentachlorophenol	25	Ŭ
85-01-8Phenanthrene	10	ΰ
120-12-7Anthracene	10	บั
86-74-8Carbazole	10	ប្រ
84-74-2Di-n-Butylphthalate	10	ט
206-44-0Fluoranthene	10	שׁ
129-00-0Pyrene	10	ט
85-68-7Butylbenzylphthalate	10	Ü
91-94-13,3'-Dichlorobenzidine	10	ט
56-55-3Benzo(a) Anthracene	10	Ü
218-01-9Chrysene_	10	ľű
117-81-7bis(2-Ethylhexyl) Phthalate	10	U
117-84-0Di-n-Octyl Phthalate		บ
205-99-2Benzo(b) Fluoranthene	10	Ü
207-09-0Bonzo(k) Fluoranthere		l u
207-08-9Benzo(k) Fluoranthene 50-32-8Benzo(a) Pyrene	10	U
193-39-5Indeno(1,2,3-cd)Pyrene	10	l u
E3-70-3Dibons(2, b) Inthone	10	Ü
53-70-3Dibenz(a,h)Anthracene	10	1 -
191-24-2Benzo(g,h,i)Perylene	10	ט
	1	1

(1) - Cannot be separated from Diphenylamine

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

גמים	SAMPLE	37/7
CPA	SAMPLE	NU.

Lab Name: COMPUCHEM.RTP Computer Comput	ontract: 68D10083		
Lab Code: COMPU Case No.: 17744	SAS No.: <u>6579HO</u> SDG No.: <u>CHY02</u>		
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: 477467		
Sample wt/vol: 1000 (g/mL) ML	Lab File ID: GH077467A07		
Level: (low/med) LOW	Date Received: 01/29/92		
% Moisture: decanted: (Y/N)			
Concentrated Extract Volume: 1000 (u	L) Date Analyzed: 02/04/92		
Injection Volume:2.0(uL)	Dilution Factor:1.0		
PC Cleanup: (Y/N) N pH:			
Number TICs found: 0 CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L			
CAS NUMBER COMPOUND NAME	RT EST. CONC. Q		

CHY24

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02

Matrix: (soil/water) WATER

Lab Sample ID: <u>477467</u>

Sample wt/vol:

ોક્ષા (કોઇલ)નુ

1000(g/ml)ML

Lab File ID:

% Moisture:

decanted: (Y/N)

Date Received: 01/29/92

Extraction:

(SepF/Cont/Sonc)

SEPF Date Extracted: 01/30/92

CONCENTRATION UNITS:

Concentrated Extract Volume: 10000(uL)

Date Analyzed: 02/04/92

Injection Volume: 2.0(uL)

Dilution Factor: 1

GPC Cleanup: (Y/N)N

pH:

Sulfur Cleanup: (Y/N) N

CAS NO. COMPOUND (ug/L or ug/Kg)UG/L Q 0.050 U 319-84-6----alpha-BHC_ 319-85-7----beta-BHC 0.05010 0.050 | U 319-86-8-----delta-BHC 58-89-9----gamma-BHC (Lindane)_ 0.050 I U 76-44-8-----Heptachlor_ <u>0.050|U</u> 309-00-2----Aldrin <u>0.050|U</u> 1024-57-3-----Heptachlor epoxide_ <u>0.050|U</u> 959-98-8-----Endosulfan I_ <u>0.050|U</u> 60-57-1-----Dieldrin <u>0.10|U</u> 0.10 U 72-55-9-----4,4'-DDE 72-20-8-----Endrin <u>0.10|U</u> 33213-65-9----Endosulfan II <u>0.10|U</u> 72-54-8-----4,4'-DDD <u>0.10|U</u> 1031-07-8-----Endosulfan sulfate 0.10 U 0.10 | U 50-29-3-----4,4'-DDT 72-43-5-----Methoxychlor_ <u>0.50|U</u> 53494-70-5----Endrin ketone <u>0.10|U</u> 7421-93-4----Endrin aldehyde 0.10 U 5103-71-9----alpha-Chlordane_ <u>0.050|U</u> 0.050 U 5103-74-2----qamma-Chlordane 8001-35-2----Toxaphene <u>5.0|V</u> 12674-11-2----Aroclor-1016 <u>1.0|U</u> 11104-28-2----Aroclor-1221 <u>2.0|U</u> 11141-16-5----Aroclor-1232 <u>.0|U</u> 53469-21-9----Aroclor-1242 1.0 U 12672-29-6----Aroclor-1248 1.0 | U 11097-69-1----Aroclor-1254 1.0 U 11096-82-5----Aroclor-1260 1.0 | U

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

COMPOUND

EPA SAMPLE NO.

MH11-1

|--|

Q

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY02

Matrix: (soil/water) WATER Lab Sample ID: 477468

Sample wt/vol: ____5.0 (g/mL) ML Lab File ID: CR077468C51

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: not dec. ____ Date Analyzed: 02/03/92

GC Column: DB-624 ID: 0.530 (mm) Dilution Factor: 1.0

Soil Extract Volume: _____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

4-87-3Chloromethane	10	U
4-83-9Bromomethane	10	U
5-01-4Vinyl Chloride	10	υ
5-00-3Chloroethane	10	U
5-09-2Methylene Chloride	150	В
7-64-1Acetone	10	ט
5-15-0Carbon Disulfide	10	U
5-35-41,1-Dichloroethene	10	שׁ
'5-34-31.1-Dichloroethane	10	ט
340-59-01,2-Dichloroethene (total)	10	ប
	10	U
.07-06-3Chioroform	10	ប
'8-93-32-Butanone	10	U
1-55-61,1,1-Trichloroethane	10	U
66-23-5Carbon Tetrachloride	10	U
5-27-4Bromodichloromethane	10	U
8-87-51,2-Dichloropropane	10	U
.0061-01-5cis-1,3-Dichloropropene	10	ט
9-01-6Trichloroethene	10	ט
.24-48-1Dibromochloromethane	10	U
9-00-51,1,2-Trichloroethane	10	ĮΨ
/1-43-2Benzene	10	U
.0061-02-6Trans-1,3-Dichloropropene	10	บ
5-25-2Bromoform	10	U
.08-10-14-Methyl-2-Pentanone	10	U
91-78-62-Hexanone	10	ַט
27-18-4Tetrachloroethene	10	U
9-34-51,1,2,2-Tetrachloroethane	10	ע
.08-88-3Toluene	10	ט
.08-90-7Chlorobenzene	10	ן ט
.00-41-4Ethylbenzene	10	U
.00-42-5Styrene .330-20-7Xylene (total)	10	U
.330-20-7Xylene (total)	10	U

CAS NO.

1E

SHIP WAS

VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

FDA	SAMPLE	NΩ
LFA	DAMPLE	NU

Lab Name: COMPUCHEM.RTP	Contract: 68D10083
2010 1103301 2011 4012011 1111	444444
Lab Code: COMPU Case No.: 17744	SAS No.: 6579HO SDG No.: CHY02
Matrix: (soil/water) <u>WATER</u>	Lab Sample ID: 477468
Sample wt/vol: 5.0 (g/mL) ML	Lab File ID: <u>CR077468C51</u>
Level: (low/med) LOW	Date Received: 01/29/92
% Moisture: not dec	Date Analyzed: 02/03/92
GC Column: DB-624 ID: 0.530 (mm)	Dilution Factor: 1.0
Soil Extract Volume: (uL)	Soil Aliquot Volume:(uL)
Number TICs found: 0	CONCENTRATION UNITS:

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	0
		1		====
		l		

EPA SAMPLE NOTO

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

Lab Name: COMPUCHEM, RTP	CHY26 Contract: 68D10083
Lab Name: COMPUCHEM.RTP Contract: 68D10083 Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11 Matrix: (soil/water) SOIL Lab Sample ID: 477495	
Matrix: (soil/water) SOIL	Lab Sample ID: 477495
Sample wt/vol: 5.0 (g/mL) G	Lab File ID: <u>GH077495C18</u>

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: not dec. 32 Date Analyzed: 02/03/92

GC Column: DB624 ID: 0.530 (mm) Dilution Factor: 1.0

Soil Extract Volume: ____(uL) Soil Aliquot Volume: ____(uL)

CONCENTRATION UNITS:
(ug/L or ug/Kg) UG/KG

		-
74-87-3Chloromethane	15	ט
74-83-9Bromomethane	15	ן טן
75-01-4Vinyl Chloride	15	ប
75-00-3Chloroethane	15	U
75-09-2Methylene Chloride	83	B
67-64-1Acetone	73	B
75-15-0Carbon Disulfide	15	Ū
75-35-41,1-Dichloroethene	15	lŭ l
75-34-31,1-Dichloroethane	15	l ŭ
540-59-01,2-Dichloroethene (total)	15	ا تا
67-66-3Chloroform	15	lŭ l
107-06-21,2-Dichloroethane	15	lü l
78-93-32-Butanone	15	ŭ
71-55-61,1,1-Trichloroethane	15	U
56-23-5Carbon Tetrachloride	15	U
75-27-4Bromodichloromethane	15	U
78-87-51,2-Dichloropropane	15	lŭ l
10061-01-5cis-1,3-Dichloropropene	15	lu l
79-01-6Trichloroethene	15	ا تا
124-48-1Dibromochloromethane	15	บั
79-00-51,1,2-Trichloroethane	15	υ
71-43-2Benzene	15	Ŭ
10061-02-6Trans-1,3-Dichloropropene	15	ן ט
75-25-2Bromoform	15	ן ט
108-10-14-Methyl-2-Pentanone	15	lu l
591-78-62-Hexanone	15	ן ט
127-18-4Tetrachloroethene	15	Ü
79-34-51,1,2,2-Tetrachloroethane	15	lŭ l
108-88-3Toluene	15	ן ט
108-90-7Chlorobenzene	15	ם
100-41-4Ethylbenzene	15	ן ט
100-42-5Styrene	15	u l
1330-20-7	15	U
	1	

11 15 Feb 550

Sample wt/vol:

Lab Name: COMPUCHEM.RTP

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

30.4 (g/mL) G

EPA SAMPLE NO.

CHY26

GRJ77495A21

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

______ Contract: 68D10083

Lab File ID:

Matrix: (soil/water) SQIL Lab Sample ID: <u>477495</u>

Date Received: 01/29/92 Level: (low/med) LOW

% Moisture: ____32

decanted: (Y/N) N__ Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/12/92

Dilution Factor: _____1.0 Injection Volume: 2.0(uL)

GPC Cleanup: (Y/N) Y pH: 6.3

CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u>

108-95-2Phenol	480	ט
111-44-4bis(2-Chloroethyl)Ether	480	Ι ΰ
95-57-82-Chlorophenol	480	บ
95-57-82-Chlorophenol 541-73-11,3-Dichlorobenzene	480	บ
106-46-71.4-Dichlorobenzene	480	lτ
95-50-11,2-Dichlorobenzene	480	Ū
	480	บ
95-48-72-Methylphenol	480	บ
	480	บ
621-64-7N-Nitroso-Di-n-Propylamine	480	ן מ
67-72-1Hexachloroethane	480	ט
98-95-3Nitrobenzene	480	ט
78-59-1Isophorone	480	Ü
88-75-52-Nitrophenol	480	บ
105-67-92,4-Dimethylphenol	480	ប
111-91-1bis(2-Chloroethoxy)Methane	480	ט
120-83-22,4-Dichlorophenol	480	บั
120-82-11,2,4-Trichlorobenzene	480	Ü
91-20-3Naphthalene	480	<u> </u>
106-47-84-Chloroaniline	480	Ü
87-68-3Hexachlorobutadiene	480	Ü
59-50-74-Chloro-3-Methylphenol	480	Ū
91-57-62-Methylnaphthalene	480	ן ט
77-47-4Hexachlorocyclopentadiene	480	Ū
88-06-22,4,6-Trichlorophenol	480	U
95-95-42,4,5-Trichlorophenol	1200	บ
91-58-72-Chloronaphthalene	480	ប
88-74-42-Nitroaniline	1200	ַ <u>ט</u>
131-11-3Dimethyl Phthalate	480	Ū
208-96-8Acenaphthylene	480	l ŭ l
506-20-22,6-Dinitrotoluene	480	บั
99-09-23-Nitroaniline	1200	Ü
83-32-9Acenaphthene	480	ן ט
FORM I SV-1		

16 11 / 1 / 1 $\mathcal{O}_{\mathbf{z}}$

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

CHY26

Lab Name: COMPUCHEM.RTP Contract: <u>68D10083</u>

Lab Code: COMPU Case No.: <u>17744</u> SAS No.: <u>6579HO</u> SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: <u>477495</u>

Sample wt/vol: 30.4 (g/mL) G___ Lab File ID: GRJ77495A21

(low/med) LOW Date Received: Level: 01/29/92

% Moisture: 32 decanted: (Y/N) N Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/12/92

Injection Volume: 2.0(uL) Dilution Factor: _____1.0

FPC Cleanup: (Y/N) YpH: <u>6.3</u>

> CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) <u>UG/KG</u> Q

51-28-5----2,4-Dinitrophenol 1200 U 100-02-7-----4-Nitrophenol 1200 U 132-64-9-----Dibenzofuran 480 U 121-14-2----2,4-Dinitrotoluene U 480 84-66-2----Diethylphthalate 480 U 7005-72-3----4-Chlorophenyl-phenylether_ 480 U 86-73-7----Fluorene 480 U 100-01-6-----4-Nitroaniline U 1200 534-52-1----4,6-Dinitro-2-Methylphenol 1200 U 86-30-6----N-Nitrosodiphenylamine (1) 480 U 101-55-3----4-Bromophenyl-phenylether U 480 118-74-1-----Hexachlorobenzene U 480 87-86-5----Pentachlorophenol 1200 U 85-01-8-----Phenanthrene 77 J U 120-12-7-----Anthracene 480 U 86-74-8-----Carbazole 480 84-74-2----Di-n-Butylphthalate_ 480 Ū 206-44-0-----Fluoranthene J 170 J 129-00-0-----Pyrene 99 85-68-7-----Butylbenzylphthalate 480 ប 91-94-1----3,3'-Dichlorobenzidine 480 U 56-55-3-----Benzo(a) Anthracene 72 J 218-01-9----Chrysene 86 J U 117-81-7-----bis(2-Ethylhexyl)Phthalate 480 U 117-84-0-----Di-n-Octyl Phthalate_ 480 205-99-2----Benzo(b)Fluoranthene 170 JX 207-08-9----Benzo(k)Fluoranthene_ 170 JX 50-32-8-----Benzo(a) Pyrene 86 J 193-39-5----Indeno(1,2,3-cd)Pyrene 480 U 53-70-3-----Dibenz(a,h)Anthracene U 480 191-24-2----Benzo(g,h,i)Perylene_

(1) - Cannot be separated from Diphenylamine

U

480

1F

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS

EPA SAMPLE NO.

CHY26

Lab Name: COMPUCHEM.RTP Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water) SOIL Lab Sample ID: 477495

Sample wt/vol: 30.4 (g/mL) G Lab File ID: GRJ77495A21

Level: (low/med) LOW Date Received: 01/29/92

% Moisture: 32 decanted: (Y/N) N Date Extracted: 02/04/92

Concentrated Extract Volume: 500.0 (uL) Date Analyzed: 02/12/92

Injection Volume: 2.0(uL) Dilution Factor: 1.0

GPC Cleanup: (Y/N) Y pH: <u>6.3</u>

god

Number TICs found: 23 CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.	UNKNOWN ALKENE	4.30	190	J
2.	UNKNOWN	4.43	1500	J
3.	UNKNOWN	4.65	1100	J
4.	ALDOL	4.80	1400	ABJ
5.	ALDOL	4.92	390	AJ
6.	UNKNOWN	5.02	240	J
7.	UNKNOWN	5.25	1500	J
8.	UNKNOWN	5.90	2800	J
9. 57-10-3	HEXADECANOIC ACID	12.37	190	JN
10.	LABORATORY ARTIFACT	14.60	340	BJ
11.	UNKNOWN	15.12	240	J
12.	UNKNOWN	16.02	97	J
13.	UNKNOWN	16.05	240	J
14.	UNKNOWN	17.17	440	J
15.	UNKNOWN	17.24	290	J
16.	UNKNOWN	18.82	770	J
17.	UNKNOWN	20.47	3000	J
18.	UNKNOWN	20.49	1600	J
19.	UNKNOWN	21.50	820	J
20.	UNKNOWN	21.87	340	J
21.	UNKNOWN	21.94	190	J
22.	UNKNOWN	23.14	480	J
23.	UNKNOWN	23.42	190	J

1D PESTICIDE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

CHY26

Lab Name: COMPUCHEM.RTP

Contract: 68D10083

Lab Code: COMPU Case No.: 17744 SAS No.: 6579HO SDG No.: CHY11

Matrix: (soil/water)SOIL

Lab Sample ID: <u>477495</u>

Sample wt/vol:

30.20(g/m1)G

Lab File ID:

CONCENTRATION UNITS:

% Moisture: 32 decanted: (Y/N)N

Date Received: <u>01/29/92</u>

Extraction: (SepF/Cont/Sonc)

SONC

Date Extracted: 02/03/92

Concentrated Extract Volume: 5000(uL)

Date Analyzed: 02/08/92

Injection Volume: 2.0(uL)

Dilution Factor: 1

GPC Cleanup: (Y/N)Y

pH:<u>6.3</u>

Sulfur Cleanup: (Y/N) N

CAS NO.	COMPOUND (ug/L or ug	/Kg) <u>UG/KG</u> Q
319-84-6	alpha-BHC	
319-85-7	beta-BHC	0.28 JP
319-86-8	delta-BHC	_i2.5 U_
58-89-9	gamma-BHC (Lindane)	_ 0.091 JP_
76-44-8	Heptachlor	0.191JPB
309-00-2	Aldrin Heptachlor epoxide Endosulfan I	j 0.56 J
1024-57-3	Heptachlor epoxide	i 2.5 i U
959-98-8	Endosulfan I	i 2.5 i U
60-57-1	Dieldrin	1 0.261JP
72-55-9	4,4'-DDE	0.80 JP
72-20-8	Endrin	_ <u> </u>
33213-65-9	Endosulfan II	1 0.281JP
72-54-8	4,4'-DDD	4.810
1031-07-8	4,4'-DDD_ Endosulfan sulfate	i 4.8 i U
50-29-3	4,4'-DDT	0.92 JP
72-43-5	Methoxychlor	i 25 i U
53494-70-5	Endrin ketone	4.8 U
7421-93-4	Endrin aldehyde	4.8 U
5103-71-9	alpha-Chlordane	2.5 U
5103-74-2	gamma-Chlordane	2.5 U
8001-35-2	Toxaphene	i 250 i U
12674-11-2	Aroclor-1016	48 U
11104-28-2		98 U
11141-16-5	Aroclor-1232	1 48 U
53469-21-9	Aroclor-1242	48 U
12672-29-6	Aroclor-1248	48 0
11097-69-1	Aroclor-1254	1 48 U
11096-82-5	Aroclor-1260	48 U

		U.S.	EPA - CLP		
		INORGANIC A	1 NALYSIS DATA	SHEET	EPA SAMPLE NO.
					MCJE02
ab Name: KE	YSTONE LAB-H	OUSTON	Contract:	6 8-D 0-014	7 !
Lab Co de: K	EYTX Ca	se No.: 177	44 SAS No.	2	SDG No.: MCJE02
Matrix (soil	/water): WAT	ER		Lab Samp	le I D: 9201301002
Level (low/m	ed): LOW			Date Rec	eived: 01/29/92
% Solids:	0.	0			
	Concentrati		g/L or mg/kg	dry weigh	t): ug/L
	CAS No.		Concentration		M
	7429-90-5	Aluminum	22.90	-:B:-E	~ \ p \
	17440-36-0			101	;P
	;7440 <i>-</i> 38 <i>-</i> 2	Arsenic	10.80	1 1	:)F
	17440-39-3	Barium	85. 50	:B:	:P :
	17440-41-7	Beryllium	1.00	:U:	; lb
	17440-43-9	Cadmium	3.00 6 87 00.00	:U:	P :
	17440-70-2	Calcium	68700.00	1 1	;
	17440-47-3	Chromium_	3.00	; U ;	P
	17440-48-4		4.00	101	1P
	17440-50-8		5.00	(B)	P
	17439-89-6		9.40 1.00	B! NE	(P)
	17439-92-1		1.00	101	(F)
			15100.00	1 1	P
	17439-96-5				I P
	17439-97-6				ICV I
	17439-02-0				P
	17440-09-7		774.00	(B)	<u> </u>
	17782-49-2		2.00 2.00 2.00	; () ; +	IF !
	17440-22-4				1P 1
	17440-23-5		14700.00		IP !
	17440-28-0		2.00		\F
	17440-62-2 17440-66-6		4.00		P
		Cyanide;	14.40 10.00		P
			10.00		AS
Color Before:	COLORLESS	Clarity	Before: CLEA	₹	Texture:
Color After:	COLORLESS	Clarity	After: CLEA	₹	Artifacts:

Color After	: COLORLESS	Clarity After:	CLEAR	Artifacts:
Comments:		_		
			···-	

FORM I - IN

I SAMPLE NO.
INDRGANIC ANALYSIS DATA SHEET : MC IEOS

.b Name: KEYSTONE LAB-HOUSTON Contract: 68-D0-0147 !_____(

Lab Code: KEYTX Case No.: 17744 SAS No.:

SDG No.: MCJE02

Matrix (soil/water): WATER Lab Sample ID: 9201301003

tevel (low/med): LOW Date Received: 01/29/92

% Solids: 0.0

CAS No.	: Analyte	 Concentration 	101	0	; ; M	
7429-90-5	Aluminum_	15.10	IB.	- <u>E</u>	- p	_
7440-36-0	[Antimony]		101		:P	
7440-38-2	Arsenic	8.10	181		: 15	
7440-39-3	Barium		! !		; P	
7440-41-7	Beryllium	1.00	:01		; P	
7440-43-9	Cadmium	3.00	103		; P	
7440-70-2	Calcium		1 1		¦ 2	
17440-47-3	:Chromium_	3.00	101		; P	
7440-48-4	:Cobalt	4.00	101		112	
7440-50-8	Copper		1 1		; P	
7439-89-6	Iron		151	NE	112	
7439-92-1	:Lead		:UI		! F	
7439-95-4	Magnesium		1 1		; P	
7439-96-5	Manganese	2.00	: U:		: P	
7439-97-6	{Mercury	0.20	: U :		$\pm CV$	
17439-02-0	Nickel		: U :		I P	
7440-09-7	Potassium	1000.00	1B1		; 12	
7782-49-2	(Selenium_	2.00	3111	\mathbb{S}	; F	
7440-22-4	Silver	2.00	:U:		† P	
7440-23-5	Sodium		1 1		¦ P	
7440-28-0	Thallium_	2.00	101		{ F	
7440-62-2	Vanadium_	4.00	HUI		¦ P	
7440-66-6	{Zinc	63.30	; ;		; ib	
	Cyanide	10.00	;∪;		1A5	
	!	<u> </u>	1_1		. ;	

Color	Before:	COLORLESS	Clarity	Before:	CLEAR	Texture:
Color	After:	COLORLESS	Clarity	After:	CLEAR	Artifacts:
Commer	nts:					

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

.b Name: KEYSTONE LAB-HOUSTON Contract: 58-D0-0147 | _______

Lab Code: KEYTX Case No.: 17744 SAS No.:

SDG No.: MCJE02

Matrix (soil/water): WATER

Lab Sample ID: 9201301004

Level (low/med): LOW

Date Received: 01/29/92

% Solids:

0.0

CAS No.						
	CAS No.	 Analyte 	 Concentration 	(0)	Q	
	17429-90-5	Aluminum	32.50			; ;
				101		; P ;
		. –		:B:		F
	17440-39-3	Barium	284.00	1 1		1P 1
	17440 -41 -7	Beryllium	1.00	: U :		; P ;
	17440-43-9	Cadmium!	3.00	101		!P !
	17440-70-2	Calcium	48400.00	1 1		{P }
	17440-47-3	Chromium_	3.00	101		1P :
17439-89-6	17440-48-4	Cobalt	4.00	101		!P :
	17440-50-8	Copper	68.00	; ;		P !
17439-95-4 Magnesium 16800.00	17439-89-6	:Iron	21.90	:B:	NE	; P ;
17439-96-5 Manganese 2.70 B P	17439-92-1	Lead	1.00	101		if i
17439-97-6	17439-95-4	:Magnesium:	16800.00	1 1		IP !
	17439-96-5	Manganese	2.70	(B)		IP !
17440-09-7	17439-97-6	Mercury	0.20	101		HCV 1
17782-49-2	17439-02-0	Nickel	22.00	: U:		(P)
	17440-09-7	(Potassium)	1300.00	131		1P :
17440-23-5 Sodium 17700.00	17782-49-2	Selenium_	2.00	101	4-	F
17440-28-0 Thallium 2.00 U	17440-22-4	Silver	2.00	1 U I		P
17440-62-2	17440-23-5	Sodium	17700.00	1 1		IP :
7440-66-6 Zinc	17440-28-0			: U:		(F)
	17440-62-2	Vanadium_	4,00	101		1P :
(Cyanide 10.00 U AS	17440-66-6	Zinc	39.50	; ;		1P
		[Cyanide	10.00	101		IAS !
	1	.		!_!		1

Color	Before:	COLORLESS	Clarity	Before:	CLEAR	Texture:
Color	After:	COLORLESS	Clarity	After:	CLEAR	Artifacts:
Commer	nt⊡:					
		· · · · · · · · · · · · · · · · · · ·				
						**

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

.5 Name: KEYSTONE LAB-HOUSTON Contract: 68-D0-0147 :_____

Lab Code: KEYTX Case No.: 17744 SAS No.: SDG No.: MCJE02

Matrix (soil/water): WATER

Lab Sample ID: 9201301005

Level (low/med): LOW

Date Received: 01/29/92

% Solids:

0.0

CAS No.	: Analyte	Concentration 	101	Q	M
7429-90-5	'Aluminum	134.00	Bi	- <u>E</u>	p
17440-36-0			iŭi		(P)
17440-38-2	Arsenic		181		! F
17440-39-3	Barium		:B:		P
17440-41-7	Beryllium		: U:		; p :
17440-43-9	Cadmium		101		}P
17440-70-2	Calcium		1 1		; P ;
17440-47-3	(Chromium_	3.00	:::		1P :
17440-48-4	Cobalt		::::		P
17440-50-8	:Copper		B		IP !
17439-89-6	Iron	202.00	1 1	ΝE	18 1
:7439-92-1	Lead	1.00	101		if :
7439-95-4	Magnesium	12400.00	1 :		P
17439-96-5	Manganese	123.00	1 1		¦P '
17439-97-6	Mercury	0.20	:::::		ICA 4
17439-02-0	Nickel	22.00	101		!P
17440-09-7	:Potassium	3030.00	131		; P :
17782-49-2	Selenium_		!B!		IF :
17440-22-4	Silver		: U :		1 12
	!Sodium		1 ;		IP !
17440-28-0	!Thallium_		; [] ;		IF !
	[Vanadium_		: U :		IP :
17440-66-6	Zinc	48.50	; ;		P
<u></u>	Cyanide	10,00	HJ :		!AS !
i	i		1 _ 1		· i

Color	Before:	COLORLESS	Clarity	Before:	CLEAR	Texture:
Color	After:	COLORLESS	Clarity	After:	CLEAR	Artifacts:
Comme	nts:					
				- 		

U.S. EPA - CLP

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

.b Name: KEYSTONE LAB-HOUSTON Contract: 68-D0-0147 :___

Lab Code: KEYTX Case No.: 17744 SAS No.:

SDG No.: MCJE02

Matrix (soil/water): WATER

Lab Sample ID: 9201301006

Level (low/med): LOW

Date Received: 01/29/92

% Solids:

0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

ICAS No.	: ! Analyte	: Concentration	1 1		; ; M
1	!	 		·a.(!
17429-90-5	Aluminum	837.00	`	E	P
17440-36-0	Antimony	30.00	141		; P
17440 - 38 - 2	Arsenic		1B:		¦ F
17440-39-3	Barium		B		I P
17440-41-7	Beryllium	1.00	101		; P
17440-43-9	Cadmium _		101		: P
17440-70-2	Calcium	38900.00	1 1		; P
17440-47-3	(Chromium_		:B:		; P
17440-48-4	Cobalt	6.70	B:		! P
17440-50-8	Copper		E:		; P
17439-89-6	Iron		1 1	NE	¦ ድ
17439-92-1	Lead	19.00	; ;	S	! F
17439-95-4	Magnesium	12700.00	1 1		} P
17439-96-5	Manganese	507.00	1 1		l P
17439-97-6	!Mercury!	0.20	101		1CV
17439-02-0	Nickel	22.00	: 0 :		۱p
17440-09-7	Potassium	3300.00	181		(p)
17782-49-2	Selenium_	2.00	181		¦
17440-22-4	Silver	2.00	: [] :		; P
17440-23-5	Sodium		1 :		; P
17440-28-0	Thallium_	2.00	: U:		1F :
17440-62-2	∃Vanadium_∃		10:		; P
17440-66-6	Zinc	176.00	} ;		{ P }
			!		: AS
			;_;		11

and the street, t				2010101	CZZIII	reaction en
Color	After:	COLORLESS	Clarity	After:	CLEAR	Artifacts:
Commer						

FORM I - IN

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

b Name: KEYSTONE LAB-HOUSTON Contract: 68-D0-0147 (______

Lab Code: KEYTX Case No.: 17744 SAS No.: SDG No.: MCJE02

Matrix (soil/water): WATER

Lab Sample ID: 9201301007

Level (low/med): LOW

Date Received: 01/29/92

% Solids:

0.0

CAS No.	: Analyte	 Concentration	; C ;	Q	Т : м	
17429-90-5	:Aluminum	1090.00	-	E	P	٠,
17440-36-0	Antimony_	30.00	101		! P	Ţ
17440-38-2	[Arsenic		+B		15	;
17440-39-3	Barium	65.30	B		P	} \$
17440-41-7	Beryllium	1.00	#U:		! P	i
17440-43-9	:Cadmium	3.00	: [] :		ነ የ	:
17440-70-2	Calcium	14500.00	· 1		l P	ł
17440-47-3	[Chromium_	3.00	: U:		1 P	1
17440-48-4	(Cobalt	4.00	10:		¦ P	1
17440-50-8	Copper	5.00	(B)		¦ P	:
17439-89-6	Iron	930.00	1	ИE	¦ 🏲	-
7 439 -92-1	:Lead	1.10	;B;		۱F	;
17439-95-4	:Magnesium	5790.00	1 1		¦ P	ļ
17439-96-5	:Manganese		-		; P	1
1 7439- 97-6	Mercury	0.20	TUT		TCV	i
17439-02-0	:Nickel	22.00	: U :		¦	:
17440-09-7	Potassium	2270.00	131		1.12	1
17782-49-2	:Selenium_		101		¦F	ŀ
17440-22-4	Silver	2.00	1111		; P	1
17440-23-5	Sodium	6150.00	-} -}		; P	1
17440-28-0	Thallium_		HUI		; F	1
17440-62-2		4.00	: U:		l P	;
17440-66-6	Zinc	27.70	1 1		¦ 2	;
i	Cyanide	10.00	U		IAS	ł
;	\	 	;_:		!	-

Color	Before:	COLORLESS	Clarity	Before:	CLEAR	Texture:
Color	After:	COLORLESS	Clarity	After:	CLEAR	Artifacts:
Commer	nts:					
						

					 — ·			
			INORGANI	C ANALY	1 'SIS DATA	SHEET	!	SAMPLE NO.
d.	Name:	KEYSTONE	LAB-HOUSTON	Co	ntract:	6 8-D 0-0147		· - · - · -
Lab	Code:	KEYTX	Case No.:	17744	SAS No.	. 4	SDG No	.: MCJE02
Matr	rix (so	oil/water)	: WATER			Lab Sample	∍ ID: '3	9201301010

% Solids: 0.0

Level (low/med): LOW

Concentration Units (ug/L or mg/kg dry weight): ug/L

Date Received: 01/29/92

	!		<u></u>		
CAS No.	Analyte	Concentration	ici	Ω	M
1			1_1		1
17429-90-5	[Aluminum_:	1560.00	; ;	E	! P
17440-36-0	Antimony_	30.00	:::::		! P
17440-38-2	Arsenic	8.90	181		;
17440-39-3	Barium	93.90	1B1		} P
17440-41-7	(Beryllium:	1.10	1B;		P
7440-43-9	Cadmium	3.00	(U)		¦ P
17440-70-2	Calcium	44100.00	} }		₽
7440-47-3	[Chromium_	7.10	1B:		l P
7440-48-4	:Cobalt:	29.00	(8)		(P
7440-50-8	(Copper	55. 60	+ +		; P
17439-89-6	llron	3470.00	1 1	NE	>
17439-92-1	Lead	59.90	1 1		! F
17439-95-4	Magnesium:	14300.00	; ;		! P
17439 -96 -5	Manganese	1210.00	} ;		; P
17439-97-6	Mercury	0.20	:::::::::::::::::::::::::::::::::::::::		ICV.
17439-02-0	Nickel	32.60	(B)		(P
17440-09-7	(Potassium)	3770.00	18:		; P
17782-49-2	(Selenium_)	2.00	3U:		F
17440-22-4	Silver	2.00	101		; _[2
	Sodium		1 1		P
17440-28-0	{Thallium_}	2.00	:ប:		} =
17440-62-2	:Vanadium_:	6.40	B		; P
17440-66-6	{Zinc}	301.00	1 1		 2
!	Cyanide	10.00	101		IAS
1			1_;		!

					Now the state of the	
Color	After:	COLORLESS	Clarity	After:	CLEAR	Artifacts:
Commer	nts:					
					•	

FORM I - IN

Comments:							
Color After:	COLORLESS	Clarity	/ After: CLEAR	₹		Arti	facts:
Color Before	: COLORLESS	Clarity	/ Before: CLEAR	t		Text	ure:
	!					. !	2
	l	Cyanide	10.00	101		IAS	}
	:7440-66-6	:Zinc	76.00	1 1		! P	1
	17440-62-2						
	7440-28-0						
			18800.00				
	17440-22-4	Silvar	2.00	101		, Р ¦ Р	<u>:</u>
	・ 7744いついファイ ・ 1770のLAGLの	iruvassium: Kalanium	10800.00 113.00 0.20 22.00 2780.00 2.50	ा हा है। सुम्बर्ग		, F	1
	1743370270 17440-09-7	TNICKEL	. ZZ.VU ! 27 9 0.00	101		; P	i
	17433=37=6 17436=00-0	imercury	U.20 PR AA	iU:		CV P	i 1
	:/439-96-5 :/439-96-5	:manganese	113.00	1 1		; P	i I
	17439-95-4	:Magnesium	10800.00	1 1		; ۲	;
	17439-92-1	:Lead		10:			i
	17439-89-6	iron	132.00	1 1	NE		:
	17440-50-8	Copper	4.50				1
	17440-48-4		4.00				1
	17440-47-3	(Chromium_)	3.00	101			1
	17440-70-2	:Calcium	33100.00	;			;
	17440-43-9	Cadmium	3.00	; U ;		¦₽	1
	17440-41-7	Beryllium	30.30 1.00 3.00 33100.00	101		; P	
	17440-39-3	Barium	30.30	B		; P	!
	17440-38-2	Arsenic	5.70 30.30 1.00	181		F	!
	17440-36-0		30.00	101		; P	1
	7429-90-5				<u> </u>	P	! !
	:CAS No.	Analyte	Concentration	101	Ø	; M	<u>}</u>
	!	;		; ;			- -
% Solids:	O. Concentrati		ug/L or mg/kg d	lrv	weinht	:) • 110	n/I
				20.0			Maria de deservado a antide
	med): LOW						: 01/29/92
Matrix (soi	1/water): WAT	ER		Lab	Sampl	e ID:	: 92013010
Lab Code:	KEYTX Ca	se No.: 177	744 SAS No.:			SDG	No.: MCJI
b Name: K	EYSTONE LAB-H	OUSTON	Contract: 8	a-p	0-0147	, ¦	MCJE09
		INORGANIC /	ANALYSIS DATA S	HEE	T	;	
			1			EP#	A SAMPLE I
			EPA - CLP				

FORM I - IN

.b Name: KEYSTONE La	1 INORGANIC ANALYSIS DATA AB-HOUSTON Contract:	EPA SAMPLE NO. SHEET : MCJE10 68-D0-0147 :
Lab Code: KEYTX	Case No.: 17744 SAS No	
Matrix (soil/water):	WATER	Lab Sample ID: 9201301012
Level (low/med):	LOW	Date Received: 01/29/92
% Solids:	0.0	
7		1

CAS No.	: : Analyte	 Concentration	; C ;	a	! ! M	1
 			. _		!	1
17429-90-5	Aluminum_	1 266.00	; ;	Œ	! P	ţ
17440-36-0	Antimony_	30.00	: [] :		¦ P	1
17440-38-2	Arsenic	6.40	:B:		F	1
17440-39-3	Barium	33.80	1B:		¦ P	ļ
17440-41-7	Beryllium	1.00	: 8 :		; P	;
17440-43-9	{Cadmium:	3.00	:0:		P	;
17440-70-2	(Calcium	37900.00	1 1		; P	;
17440-47-3	Chromium_	3.00	: U:		; P	1
17440-48-4	(Cobalt	6.40	:B:		; p	;
17440-50-8	:Copper		(B)		: P	1
17439-89-6	Irom		1 1	NE	ļ []	1
17439-92-1	Lead		181		F	1
17439-95-4	Magnesium		; ;		¦ P	ţ
17439-96-5	Manganese	379.00	;		; P	ł
17439-97-6	Mercury	0.20	: 111		ICV	;
17439-02-0	:Nickel	22.00	: 11:) P	1
17440-09-7	Potassium	2620.00	181		; P	ļ
17782-49-2	Selenium_!	3.30	183		F	1
17440-22-4	Silver	2.00	1111		¦ P	l
17440-23-5	Sodium		! !		(P	1
17440-28-0	:Thallium_	2.00	: U:		! F	ļ
17440-62-2	:Vanadium_	4.00	101		: P	;
17440-66-6	Zinc	61.40	1 1		l P	ì
1	Cyanide	10.00	:0:		IAS	ł
	1		1_1		:	}
'	. '		' - '		'	ı

Color	Before:	COLORLESS	Clarity	Before:	CLEAR	Texture:		
Color	After:	COLORLESS	Clarity	After:	CLEAR	Artifacts:		
Comments:								

EFA SAMPLE NO. INORGANIC ANALYSIS DATA SHEET

Lub Name: KEYSTONE LAB-HOUSTON Contract: 68-D0-0147 :

Lab Code: KEYTX Case No.: 17744 SAS No.:

SDG No.: MCJE11

Matrix (soil/water): SBIL

Lab Sample ID: 9201302002

Level (low/med): LOW

Date Received: 01/29/92

% Solids:

51.2

Concentration Units (ug/L or mg/kg dry weight): MG/KG

1	• • • • • • • • • • • • • • • • • • • •	<u> </u>	1 1		1 1
1000 No	1 01	; (1 1		1 64 1
CAS No.	i Mudiyte	Concentration	161	(5)	; M ;
17405 50 5	4 7		-		-!=!
17429-90-5			1 1		(P (
17440-36-0					HP 1
	Arsenic		1 t		F
17440-39-3	Barium	120.00	1 1		(F)
17440-41-7	Beryllium	1.10	181		:P :
17440-43-9	:Cadmium	1.40	1B1		IF :
17440-70-2	Calcium	10200.00	1 1		18 ;
17440-47-3	:Chromium_	31.60	1 1		#F ;
17440-48-4	:Cobalt	38.80	1 1		(P) (
17440-50-8	:Copper		1 1		(P)
17439-89-6	Iron		1 1		(P)
17439-92-1			1 1		(F)
17439-95-4	Magnesium	5420.00	1 1		(P)
17439-96-5	:Manganese	1340.00	1 1		P
17439-97-6	Mercury	0.29	1 1		ICV :
17439-02-0			1 1		1F (
17440-09-7	Fotassium	629.00	:B:		F
17782-49-2	Selenium_	1.50	1B1		(F)
17440-22-4	Silver	0.78	iu:		IP i
17440-23-5	:Sodium	203.00	:B:		(F) (
17440-28-0	Thallium_		101		IF :
17440-62-2	Vanadium_		1 1		4 F '
17440-66-6	Zinc		1 }		(P) :
1	Cyanide		:U1		IAS I
<u> </u>		}			1

Color Before: BRUWN Clari	ıty	Before:	
---------------------------	-----	---------	--

Texture: COARSE

Color After: LT.BROWN Clarity After:

Artifacts:

Comments:

~	 	-	 			
	 	 ·	 	 	Many	
_		 		 		

	1 INORGANIC ANALYSIS	DATA CHEET	EPA SAMPLE NO.
Lab Name: KEYSTONE Le		nct: 68-D0-0147	MCJE12
Lab Code: KEYTX	Case No.: 17744 SA	AS No.:	SDG No.: MCJE11
Matrix (soil/water):	SOIL	Lab Sample	ID: 9201302003
Level (low/med):	LOW	Date Recei	ved: 01/29/92
% Solids:	50.4		

!	!	1 1		!	7
: Analyte	!Concentration	ici	. n	. M	i
!	!		_	!	i
Aluminum	8190.00	-		i p	-
					i
_					·
		•			•
					į
					į
					,
				-	!
					:
		11			
			5		
		ii	-		i
_		11			i
		ìì			ì
		1			į
					í
					1
					1
					1
		101			į
		1			i
				IP.	i
		101			1
- / · · ·		- 1		1	ŗ
	Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Fotassium Selenium Silver Sodium Thallium Vanadium	Aluminum	Aluminum	Aluminum	Aluminum

Calar	Before:	BROWN	Clarity	Before:	Texture:	COARSE
Color	After:	LT.BROWN	Clarity	After:	Artifacts:	
Commer	nts:					

Arry)

U.S. EPA - CLP

INDRGANIC ANALYSIS DATA SHEET

Lab Name: KEYSTONE LAB-HOUSTON Contract: 68-D0-0147

Lab Code: KEYTX Case No.: 17744 SAS No.: SDG No.: MCJE11

Matrix (soil/water): SOIL Lab Sample ID: 9201302004

Level (low/med): LOW Date Received: 01/29/92

% Solids:

60.6

1	1	!	1 1	**	1 1
ICAS No.	: Analyte	Concentration	101	Q	: M :
ţ	_ [}]	·	_ _		_
17429-90-5	******		; ;		IP I
17440-36-0			101		IF I
17440-38-2	Arsenic		1 1		if i
17440-39-3	¦Barium	146.00	1 1		HP H
17440-41-7	Beryllium	2.20	; ;		(P)
17440-43-9			: U:		HP :
17440-70-2	Calcium	1800.00	1 1		(P)
17440-47-3	Chromium_	19.30	1 1		:P :
17440-48-4	:Cobalt	31.00	1 1		1P :
17440-50-8	:Copper	61.00	1 1		HP :
17439-89-6	:Iron	17500.00	1 1		IF :
17439-92-1	:Lead	3,30	1 1	S	HF :
17439-95-4	:Magnesium	: 2580.00	+ +		HP :
17439-96-5	:Manganese	291.00	1 1		4F 1
17439-97-6	Mercury	0.50	1 1		ICV :
17439-02-0	Nickel	55.20			(F)
17440-09-7	:Potassium	869.00	;B;		if :
17782-49-2	Selenium_	0.96	181	W	IF :
17440-22-4	Silver	0.66	:U:		ir :
17440-23-5	Sodium	80.60	(B)		(P)
17440-28-0	Thallium_	0.66	:U:		IF :
17440-62-2			1 1		1P 1
17440-66-6	{Zinc	299.00	1		(F) (
ł	Cyanide	0.83	:::		IAS I
ł		l 	1_1		_

Color	Before:	BROWN	Clarity Before:	Texture: COARSE
Color	After:	LT.BROWN	Clarity After:	Artifacts:
Commer	nts:			

	1 INORGANIC ANALYSIS	DATA SHEET	EFA SAMPLE NO.
Lab Name: KEYSTONE L		ct: 68-D0-0147	MCJE14
Lab Code: KEYTX	Case No.: 17744 SA	S No.:	SDG No.: MCJE11
Matrix (soil/water):	SOIL	Lab Sampl	e ID: 9201302005
Level (low/med):	Law	Date Rece	rived: 01/29/92
% Solids:	43.2		

!	!		1 1		:	$\overline{}$
ICAS No.	Analyte	Concentration	ici	Q	M	i
1	1	}	1 1		1	1
17429-90-5	Aluminum	10500.00			i F	•
	Antimony_		101		F	1
17440-38-2	Arsenic	3.80	1B:	S	\F	1
17440-39-3	Barium	154.00			i P	ŧ
17440-41-7	:Beryllium	2.10	1B1		iP	ì
17440-43-9	Cadmium	2.20	(B)		₽	1
17440-70-2	Calcium	4560.00	1 1		18	;
17440-47-3	Chromium_	49.20	+ +		(P	ł
17440-48-4	:Cobalt	59.70	1 1		¦ P	ł
17440-50-8	(Copper	105.00	-		ŀF'	ŧ
17439-89-6	Iron	23000.00	1 1		IP.	1
17439-92-1	!Lead	5.30	1 1	S	ŀF	1
17439-95-4	Magnesium	3100.00	1 1		P	í
17439-96-5	Manganese	1540.00	1 1		; F.	ì
17439-97-6	Mercury		1 1		ICV	ŧ
17439-02-0	Nickel	75.20	; ;		i P	ł
17440-09-7	Fotassium		B :		F	-
	Selenium_		ł U I	S	F	;
	Silver		101		F	ł
	Sodium		B		i P	i
	Thallium_		lu l		∤F	1
	Vanadium_		+ +		ነድ	;
17440-66-6	¡Zinc		1 1		F	ł
!	Cyanide	1.20	: U :		IAS	1
}	·		.1_1.		1	. 1

Color	Before:	DK.BROWN	Clarity	Before:	Texture:	COARSE
Color	After:	LT.YELLOW	Clarity	After:	Artifacts:	
Commer	nts:					
						

Lab Code: KEYTX Case No.: 17744 SAS No.: SDG No.: MCJE11

Matrix (soil/water): SOIL Lab Sample ID: 9201302006

Level (low/med): LOW Date Received: 01/29/92

% Solids: 83.6

!	i	1	; ;		
ICAS No.	! Analyta	Concentration			' M :
;	i Histarare	iconcentiation	اسا	G:	j (1
7429-90-5	'Aluminum_	6810.00	-	-	·
	Antimony_		: :U:		1F 1
	'Arsenic			ŝ	iF i
17440-39-3	Barium		1	_	1P 1
17440-41-7			;B;		1F 1
	Beryllium		1 P 1		
	Cadmium		1 1		1F :
	Calcium		i i		1P :
17440-47-8	Chromium_		• •		IP :
17440-48-4	Cobalt		; ;		
17440-50-8			i i	•	(F)
	:Iron		1 1		iP :
17439-92-1	!Lead	: 3.50	1 1	S	if :
17439-95-4	:Magnesium	1830.00	1 1		HP H
17439-96-5	Manganese	411.00			1F 1
17439-97-6	:Mercury		1 1		ICV :
17439-02-0	Nickel	20.90	1 1		18 1
17440-09-7	(Potassium	822.00	1B:		F
17782-49-2	Selenium_	2.40	101	S	IF :
17440-22-4	Silver	0.48	: U :		IF I
17440-23-5	Sodium	129.00	(B)		1F 1
17440-28-0	Thallium_	0.48	: U:		IF :
17440-62-2	Vanadium	41.10	1 1		1F' :
17440-66-6	Zinc	1230.00	1 1		(P)
1	Cyanide	0.68	1 1		IAS I
ł	_ /	;	; ;		; ;
			-		

Color	Before:	BROWN	Clarity	Before:	Texture:	COARSE
Color	After:	LT.YELLOW	Clarity	After:	Artifacts:	
Comme	nts:					

	u.s.	EPA - CLP			
	INCORONIC /	1 ANALYSIS DATA	CUEET	EPA	SAMPLE NO.
Lab Name: KEYSTONE LAB-H		Contract:		.47	MCJE16
Lab Code: KEYTX Ca	se No.: 17	744 SAS No.	:	SDG	No.: MCJE11
Matrix (soil/water): SOI	L		Lab Sam	ple ID:	9201302007
Level (low/med): LOW	ı	-	Date Re	ceived:	01/29/9 2
% Solids: 43.	7				
Concentrati	on Units (ug/L or mg/kg	dry weig	jht): MG	/K G
CAS No.	Analyte	Concentration !	ici Q	M	
	Aluminum_		1 ;	- -	
	Antimony_ Arsenic				
	Barium			IP I	
17440-41-7	Beryllium	0.55		(P)	
	Cadmium			IF I	
	Calcium			IP I	
	(Chromium_			iF' i	
	Cobalt			1P	
17440-50-8		71.50		IP I	
17439-89-6		39000.00		10	
17439-92-1		4810.00		\F \	
	Magnesium			P	
	Manganese Mercury			(P (CV	
17439-02-0		10.60	B!	IP I	

Color	Before:	BLACK	Clarity	Before:	Texture:	COARSE
Color	After:	LT.YELLOW	Clarity	After:	Artifacts:	
Commer	nts:					
						
						

17440-09-7 (Potassium)

(7782-49-2 (Selenium_)

17440-28-0 | Thallium_1

17440-62-2 | | Vanadium | |

{Cyanide

17440-22-4 |Silver_

17440-23-5 (Sodium_

17440-66-6 (Zinc_

330.00

0.92

ા.⊝ટ

0.92

26.50

651.00 1.80

52.40

101

101

101

1B (

10:

F

!F

16

IF.

۱F

IF

18

IAS

INORGANIC ANALYSIS DATA SHEET EPA SAMPLE NO.

| MCJE17 |

Lab Name: KEYSTONE LAB-HOUSTON Contract: 68-D0-0147 (_

Lab Code: KEYTX Case No.: 17744 SAS No.: SDG No.: MCJE11

Matrix (soil/water): SOIL

Lab Sample ID: 9201302008

Level (low/med): LOW

Date Received: 01/29/92

% Solids:

81.8

CAS No.	 Analyte 	 Concentration 	101	Q	
17429-90-5	Aluminum_	4970.00	1 1		(F)
17440-36-0	Antimony_		101		(F)
17440-38-2	{Arsenic	3.90		S	(F (
17440-39-3	Barium	80.60	1 1		}F' ;
17440-41-7	Beryllium	0.71	B		ip i
17440-43-9	Cadmium	0.73	: U :		IP :
17440-70-2	Calcium	1520.00	1 1		(P)
17440-47-3	Chromium_	12.40	1 1		(P) (
17440-48-4	:Cobalt	8.60	1B 1		1P
17440-50-8	Copper	15.40			(P)
17439-89-6	Iron	12800.00	1 1		(F)
17439-92-1	Lead	1.90	1 1	S	if :
17439-95-4	Magnesium	1040.00	1B1		IP I
17439-96-5	:Manganese	811.00	1 1		1F 1
17439-97-6	Mercury	0.12	101		ICV 1
17439-02-0	Nickel	9.80	(B)		IP (
17440-09-7	Potassium		B		(P) (
17782-49-2	:Selenium_		(B)	W	¦F ∤
17440-22-4	Silver	0.49	lu:		if i
17440-23-5	Sodium		B		iP (
17440-28-0	Thallium_		:U:		if !
17440-62-2	:Vanadium_	15.70	+ +		IP :
17440-66-6	Zinc	200.00	1		IF I
1	Cyanide	0.61	101		IAS I
1	· i	! !	_ _ .		!!

Color	Before:	RED-BROWN	Clarity	Before:	Te×ture:	COARSE
Color	After:	LT.BROWN	Clarity	After:	Artifacts:	
Commer	nts:					
	.,					

100

	INORGANIC AN	1 WALYSIS DATA	SHEET	EPA SAMPLE NO.
Lab Name: KEYSTONE L			68-D0-0147	MCJE18
Lab Code: KEYTX	Case No.: 1774	44 SAS No	.:	SDG No.: MCJE11
Matrix (soil/water):	SOIL		Lab Sample	• ID: 9201302009
Level (low/med):	LOW		Date Rece	ived: 01/29/9 2
% Solids:	76.0			
Concent	ration Units (ug	ı/L or mg/kg	dry weight): MG/KG

17429-90-5 (Aluminum (3400.00 15 †P 17440-36-0 |Antimony_| 7.90 101 17440-38-2 | Arsenic_ 6.70 1 ŀF 17440-39-3 |Barium_ 52.70 1 : ∦F' 17440-41-7 | Beryllium | 0.51¦F' 1B (17440-43-9 | Cadmium___| 1P 0.79 101 lP 17440-70-2 | Calcium___| 2110.00 1 1 17440-47-3 | Chromium_1 10.60 1P 1 1 6.40 i P :B: 17440-50-8 (Copper_ ¦F 10.00 17439-89-6 | Iron 10800.00 #P 17439-92-1 (Lead) ¦F 182.00 17439-95-4 (Magnesium) ¦F' 937.00 (B) 17439-96-5 (Manganese) ¦F' 318.00 17439-97-6 | Mercury__1 0.13 101 ICV 17439-02-0 [Nickel_ 7,40 iF. |B| 17440-09-7 [Potassium] 397.00 :B: †F 17782-49-2 ||Selenium_| 0.63 1F IB: W 17440-22-4 |Silver_ 0.53 15 101 : F 17440-23-5 | Sodium | 43.50 BI 17440-28-0 |Thallium_1 ¦F 0.53101 :7440-62-2 (Vanadium_) !F 19,60 1 1 |7440-66-6||Zinc_ 169.00 1 F 1 1 [Cyanide_ IAS 0.66101

Calar	Before:	RED-BROWN	Clarity	Before:	Texture:	COARSE
Color	After:	LT.BROWN	Clarity	After:	Artifacts:	
Commer	nts:					

Matrix (soil/water): SOIL Lab Sample ID: 9201302012

Date Received: 01/29/92

% Solids: 83.1

Level (low/med): LOW

CAS No.	 Analyte	 Concentration 	 C	Q	; ; M	
17429-90-5	Aluminum	4170.00			; F	- <u>`</u>
17440-36-0			101		lP	1
17440-38-2			1 1		i F	1
17440-39-3	Barium		1 1		∤P	i
17440-41-7			(B)		∔P	ţ
17440-43-9	Cadmium	0.72	101		iP	ţ
17440-70-2	Calcium	1620.00	1 1		IP	:
17440-47-3	(Chromium_		1 :		i P	1
17440-48-4	Cobalt	7.50	:B:		i P	1
17440-50-8	Copper	7.10	1 1		i F	;
17439-89-6			1 1		i Fr	1
17439-92-1	:Lead		! !		¦F	;
17439-95-4	Magnesium	1140.00	(B)		(P	1
17439-96-5	Manganese	351.00	1 1		₽F	ł
17439-97-6	Mercury	0.12	101		ICV	ł
17489-02-0	Nickel	7.10	(B)		i 🗗	j L
17440-09-7	Potassium	483.00	¦₽¦		1 F	į
17782-49-2	Selenium_	0.60	!B:		ŀF	ļ
17440-22-4	:Silver	0.48	101		18	ł
17440-23-5	Sodium	115,00	1B (¦F'	1
17440-28-0	Thallium_	0.48	101		iF	f
17440-62-2	:Vanadium_	12.30	1 1		¦ Fʻ	1
17440-66-6	Zinc	201.00	+ :		lF:	ì
1	[Cyanide		10:		IAS	ţ
1	1	! 	1_1			_ 1

Color	Before:	RED-BROWN	Clarity	Before:	Texture:	CDARSE
Color	After:	LT.BROWN	Clarity	After:	Artifacts:	
Commer	nts:					
			·····			·······

	INORGANIC ANALY	1 SIS DATA SHEET	EPA SAMPLE NO.
Lab Name: KEYSTONE L		ntract: 68-D0-0147	MCJE20
Lab Code: KEYTX	Case No.: 17744	SAS No.:	SDG No.: MCJE11
Matrix (soil/water):	SOIL	Lab Sample	e ID: 9201302013
Level (low/med):	LOW	Date Rece	ived: 01/29/92

% Solids: 64.7

CAS No.	 Analyte	 Concentration 	C	Q	: M	
17429-90-5	(Aluminum_	3760.00	-		F	- 1
17440-36-0	Antimony_	9.30	: U :		¦ F'	i
17440-38-2	Arsenic	9.00	1 1		∤F	;
17440-39-3	Barium	80.90	1 1		: F	1
17440-41-7	Beryllium		:B:		F	i
17440-43-9	:Cadmium	1.10	B		(P	i
17440-70-2	Calcium	12400.00	1 1		∤P	1
17440-47-3	Chromium_	: 38. 60	1 1		1P	t
17440-48-4	:Cobalt	8.80	:B:		18	ł
17440-50-8	:Copper	81.70	1 1		¦ F'	1
17439-89-6	!Iron	10300.00	1 1		(P	ť
17439-92-1	:Lead	: 253. 00	1 1		¦F	ļ
17439-95-4	:Magnesium	4750.00	; ;		¦₽`	ł
17439-96-5	:Manganese	437.00	+ +		(P	1
17439-97-6	!Mercury	0.23	1 1		ICV	1
17439-02-0	Nickel	10.70	(B)		l F	i
17440-09-7	Potassium	534.00	(B)		l F	1
17782-49-2	{Selenium_	0.96	(B)	W	\F	1
17440-22-4	Silver	9.62	:U:		i F	i
17440-23-5	Sødium	63.40	IB!		1P	- 1
17440-28-0			:U:		¦F	¦
17440-62-2	:Vanadium_	12.70	(B)		l F	ļ
	Zinc		1 1		i F	ł
·	Cyanide	0.77	:U:		IAS	-
	1	1	_!_!_		_	. !

Color	Before:	BROWN	Clarity	Before:	Texture:	COARSE
Calor	After:	LT.BROWN	Clarity	After:	Artifacts:	
Commer	nts:					
			······································			

INORGANIC ANALYSIS DATA SHEET :-----

EFA SAMPLE NO.

MCJE21

Lab Name: KEYSTONE LAB-HOUSTON Contract: 68-D0-0147 :

Lab Code: KEYTX Case No.: 17744 SAS No.:

SUG No.: MCJE11

Matrix (soil/water): SOIL

Lab Sample ID: 9201302014

Level (low/med): LOW

Date Received: 01/29/92

% Solids:

74.9

CAS No.	: : Analyte :	 Concentration 	; ;	Q	; M ;
17429-90-5	Aluminum_	5090.00	- -		i F
	Antimony_		(B)		(P)
17440-38-2			1 1	S	F
	Barium		1 1		(F) 1
17440-41-7	Beryllium	0.65	B		(P.)
17440-43-9	Cadmium	2.30	1 1		16 1
17440-70-2	Calcium	17600.00	1 1		(F)
17440-47-3	(Chromium_	45.10	1 1		(P)
17440-48-4	Cobalt	14.80	1 1)P
17440-50-8	Copper	388.00	1 1		1P
17439-89-6	Iron	67800.00	1 1		(P)
17439-92-1	Lead	: 358.00	1 1		1F
17439-95-4	:Magnesium	4860.00	1 1		18 1
17439-96-5	lManganese	801.00			if i
17439-97-6	Mercury	0.33	1 1		ICV I
17439-02-0	Nickel	\$6.50	1 1		1 F) 1
17440-09-7	lPotassium	1100.00	IB:		(F) (
17782-49-2	Selenium_	0.53	-{U;	W	#F #
17440-22-4	Silver	0.53	iu:		(F)
17440-23-5	Sodium	219.00	IB:		ie :
17440-28-0	Thallium_	0.53	:U:		IF :
17440-62-2	:Vanadium_	73.10	1 1		IF I
17440-66-6	Zinc	1150.00	1		IF !
}	Cyanide	0.67	: U :		IAS I
!	. !	!	-1-1		.11

Color	Retore:	BROMN	Clarity	Before:	Texture:	CUARS
Color	After:	LT.YELLOW	Clarity	After:	Artifacts:	
Commer	nts:					
		**************************************			······································	

	INORGANIC ANAL	1 VOIC DATA CHE	EPA SAMPLE N	
Lab Name: KEYSTONE			: MCJE22 -D0-0147 :	;
Lab Code: KEYTX		SAS No.:	SDG No.: MCJE	
Matrix (soil/water)	: SOIL	La	ab Sample ID: 92013020	015

Level (low/med): LOW Date Received: 01/29/92

% Solids: 74.8

Concentration Units (ug/L or mg/kg dry weight): MG/KG

CAS No.	 Analyte 	 Concentration	 C 		: M
17429-90-5	Aluminum	5470.00	1-1		P;
17440-36-0			101		IF !
17440-38-2	Arsenic	10.40			IF :
17440-39-3	:Barium		; ;		J₽ I
17440-41-7	Beryllium	0.78	B		F
17440-43-9	Cadmium	0.80	101		1P 1
17440-70-2	Calcium	2670.00	1 1		IP I
17440-47-3	Chromium_	8.20			P
17440-48-4	:Cobalt	8.70	181		HP H
17440-50-8	:Copper	17.00	+ +		HP :
17439-89-6	:Iron	11600.00	1 }		F :
17439-92-1	:Lead	22.20	+ +	W	∃F ∃
17439-95-4	!Magnesium	1070.00	:B:		1P 1
17439-96-5	:Manganese	469.00	1 1		IF I
17439-97-6	:Mercury	0.13	¦U¦		ICV :
17439-02-0	Nickel	12.70	1 1		IP I
17440-09-7	(Potassium	483.00	; B ;		(F)
17782-49-2	:Selenium_	0.72	B	W	HF H
17440-22-4	Silver	0.53	IU!		F
17440-23-5	(Sodium	91.00	(B)		(F) (
17440-28-0	Thallium_	0.53	101		IF !
	Vanadium_		+ +		1F 1
17440-66-6	{Zinc	286.00	1 1		#P #
}	Cyanide	0.67	101		IAS
1	!	·			_!!

Color	Before:	RED-BROWN	Clarity	Before:	Texture:	COARSE
Color	After:	LT.BROWN	Clarity	After:	Artifacts:	
Commer	nts:					

FORM I - IN

INORGANIC ANALYSIS DATA SHEET |-------

EFA SAMPLE NO.

HCJE23

Lab Name: KEYSTONE LAB-HOUSTON Contract: 68-D0-0147 (__

Lab Code: KEYTX Case No.: 17744 SAS No.:

SDG No.: MCJE11

Matrix (soil/water): SBIL

Lab Sample ID: 9201302016

Level (low/med): LOW

Date Received: 01/29/92

% Solids: 77.4

Concentration Units (ug/L or mg/kg dry weight): MG/KG

ICAS No.	 Analyte	 Concentration	C	; M
7429-90-5	Aluminum_	8230.00	-¦-;-	 ; ;
	Antimony_		iu i	(F) (
17440-38-2			1 1	1F 1
17440-39-3	Barium		1 1	(F)
17440-41-7			(B)	(F)
17440-43-9			{U}	(F) (
17440-70-2			1 1	(P)
17440-47-3	Chromium_		: :	(P)
17440-48-4	Cobalt	11.10	(B)	(P)
17440-50-8	:Copper	20.10	1 1	1P :
17439-89-6	Iron		+ +	(P)
17439-92-1	Lead		1 1	if i
17439-95-4	Magnesium		1 1)P }
17439-96-5	Manganese	1090.00	1 1	IP :
17439-97-6	Mercury	0.13	iu:	ICV
17439-02-0			1 1	(F)
1 744 0-09-7	Potassium	: 383.00	iB:	(P)
17782-49-2	Selenium_	0.52	101	if i
17440-22-4	Silver	0.52	i U i	iP i
17440-23-5	Sodium	41.10	B	if i
17440-28-0	Thallium_	0.52	: U :	IF I
17440-62-2	Vanadium_		1 1	IF :
17440-66-6	Zinc	61.80	; ;	(P)
1	Cyanide	0.65	101	IAS !
	·	f	_	

LO	ι	OΓ	гe	TO 1	е:	DLYMMIA	

Clarity Before:

Texture: COARSE

Color After: LT.YELLOW Clarity After:

Artifacts:

Comments:

INORGANIC ANALYSIS DATA SHEET

EPA SAMPLE NO.

b Name: KEYSTONE LAB-HOUSTON Contract: 68-D0-0147 (______

Lab Code: KEYTX

Case No.: 17744 SAS No.:

SDG No.: MCJE02

Matrix (soil/water): WATER

Lab Sample ID: 9201301013

Level (low/med): LOW

Date Received: 01/29/92

% Solids:

in the first

0.0

Concentration Units (ug/L or mg/kg dry weight): ug/L

	oncentration (C Q M	Concentration	! Analyte !	ICAS No.
17440-36-0 Antimony_ 30.00	15.10 B E P	15.10	; Aluminum	; ;7429-90-5
17440-38-2 Arsenic			_	
1.00 U P				
17440-41-7 Beryllium 1.00 U P				
17440-43-9				17440-41-7
17440-70-2 Calcium_ 29.10	3.00 (U) (P		•	17440-43-9
17440-48-4 Cobalt	29.10 (8) (8			17440-70-2
17440-50-8 Copper	3.00 (U) (P	3.00	Chromium_	17440-47-3
17439-89-6	4.00 (U) (P	4.00	:Cobalt	17440 -48 -4
17439-89-6	3.00 (U) (P	3.00	Copper	17440-50-8
1.00	12.50 B NE P			
17439-96-5 (Manganese) 2.00 (U) (P) 17439-97-6 (Mercury) 0.20 (U) (P) 17439-02-0 (Nickel) 22.00 (U) (P)	1.00 (U) (F			
17439-97-6 [Mercury_]	42.60 (B) (P	42.60	Magnesium	17439-95-4
17439-02-0 (Nickel) 22.00 (U) (P	2.00 (U) (P	2.00	Manganese	17439-96-5
	0.20 IUI ICV	0.20	[Mercury]	17439-97-6
17440-09-7	22.00 (U) (P	22.00	{Nickel	17439-02-0
	722.00 (U) (P	722.00	(Potassium)	17440-09-7
17782-49-2 (Selenium_) 2.00 (U) (F	2.00 (U) (F	2.00	Selenium_	1 <i>7</i> 782-49-2
17440-22-4	2.00 (U) (P			
(7440-23-5 (Sodium 30.00 (U P	30.00 (U) (P	30.00	(Sodium	(7440-23-5
17440-28-0 (Thallium_) 2.00 (U) (F	•			17440-28-0
17440-62-2	4.00 (U) (P	4.00	:Vanadium_	17440-62-2
17440-66-6 Zinc 15.80 B P	15.80 (B) (P			17440-66-6
Cyanide 10.00 U AS	10.00 (U) (AS	10.00	Cyanide	!
			!	1

Color Aft	er: COLO	RLESS C1	arity After:	CLEAR	Artifacts:
Comments:					
				·	

Color Before: COLORLESS Clarity Before: CLEAR Texture:

U.S. EPA - CLP

	TNOBGANIG ANALYS	CIC DATA CUEST	EPA SAMPLE NO.
Lab Name: KEYSTONE LA	INORGANIC ANALYS AB-HOUSTON Cor	ntract: 68-00-0147	MCJE26
Lab Code: KEYTX	Case No.: 17744	SAS No.:	SDG No.: MCJE11
Matrix (soil/water):	SOIL	Lab Sample	e ID: 9201302017
Level (low/med):	LOW	Date Rece	ived: 01/29/92

% Solids: 67.9

1	1			1	
CAS No.	; Analyte	Concentration	ا سانا ا	Ø	1 M 1
17429-90-5	Aluminum_	6790.00	-	*	-
	Antimony_		101		HP I
	Arsenic			W	iF i
17440-39-3	Barium		1B I		1F' 1
17440-41-7	Beryllium		(B)		1F
17440-43-9	Cadmium		: U :		{ ₽ }
17440-70-2	Calcium		IB!		(P)
17440-47-3	Chromium_	14.20	1 1		(F) (
17440-48-4	Cobalt	9.80	1B1		(F) {
17440-50-8	:Copper	13.50	E		15
17439-89-6	liron		1 1		(P)
17439-92-1	Lead		1 1		IF :
17439-95-4	Magnesium	1250.00	(B)		1F :
17439-96-5	lManganese	366.00			if i
17489-97-6	Mercury	0.15	101		TCV 1
17439-02-0	Nickel	10.70	; B		IP 1
17440-09-7	:Fotassium	1 582.00	(B)		{F }
17782-49-2	Selenium_	0.82	B	М	IF I
17440-22-4	Silver	0.59	HU!		F
17440-23-5	Sodium	1 32.10	∃B ¦		1F 1
17440-28-0	Thallium_	0.59	101		IF I
17440-62-2	:Vanadium_	£ 27.20			iF (
17440-66-6	Zinc	129.00	; ;		IP I
ł	Cyanide	0.74	101		IAS I
<u> </u>	. !	1	_1_1		_1;

Color Before:	BROWN	Clarity	Before:	Texture:	COARSE
Color After:	LT.YELLOW	Clarity	After:	Artifacts:	
Comments:					
					
	. چوپوچر ــــــــــــــــــــــــــــــــــــ				

APPENDIX C

Home	Owner's Name:	Date:
Addre	(b) (6)	Home Phone:
i	Please describe the type of home well you presently utilize: (Check those which apply)	
	Dug well Drilled by a rig; if so, please identify company (r	name, address, and phone):
	Other (describe)	•
1 a .	Please estimate the following: Year installed	New DYMA
2.	Please provide the following measurements of your well:	
	a. b. (b) (9)	
3.	Please describe the casing material used in your well:	
	a. Composition (ron PVC Galvanized	Terra Cotta Other - Please Specify (if known)
	b. Length (if known):	

нот	e Owne	r's Name: Date:
4	Pleas	se describe, if known, any screening material used in your well:
	a.	Length of screen:
	ъ.	Depth of screen in well:
5.		se indicate, if known, the depth to the groundwater in your well (from the surface):
6.	Pleas	se indicate the composition of home plumbing (pipes) in your system:
		PVC Galvanized Lead Lead Lead
7.	a.	Location of the pump Inside the well (submersible pump); Depth in well: Outside the well (indicate location):
	b.	Type of pump Branch (if known): Capacity (gallons per minute):
	c.	Estimate hours of pump operation per day:
	d.	Type (material) Washing Capacity
5 .	a.	Do you regularly or have you ever added chemicals directly to your well? (i.e., chlorine, clorox, etc.) If yes, date last added: Compound (brand name):

Hom	e Owner's Name:	Date:
	b. Please describe any type of water treat	ment you are currently using (check those which
	appiy):	·
	Filtration	Other (explain)
	Туре:	None
	Water Softeners	
	Indicate Brand:	
9.	Please indicate any testing that has been done	on your water:
	Date of testing:	
	Name of individual(s) responsible for testing:	
10.	Well Use: Drinking	1 Other: hascheld
11.	Do you notice color, taste, or odor problems w	rith well water? Yes No
	If yes, identify:	,
	Do you notice water supply problems?	Yes No
	If yes, when: how often	:
12.	Please indicate the type(s) of wastewater syste	em used (check):
	Sewer Line	
	Septic Tank Cesspool	Drain field
	Distance to Well	
13.	We may be taking water samples from many	area homes in the near future. If your well is
,	chosen for sampling, would you be willing to	allow our NUS representatives to sample your
	well? Sampling involves collecting water from	a one of your indoor or outdoor spigats.
	Yes, I will allow my well to be sam	pled.
	No, I will not allow my well to be s	ampled.

Home	e Owner's Name: (D) (6) Date:	_
	If yes, please indicate the time of day which would be convenient for us to sample.	
	Marning Afternoon Evening	
14.	In the space below, please furnish a rough sketch of your property, indicating the location your well and on-lot wastewater system, if applicable. Also indicate the location of the space would prefer us to sample.	

atile livet.

Page 1 of 4

Home O	wner's Name:(D) (6)	ate: 1/28/42
Address:	_(b) (6) Home Pi	
	Please describe the type of home well you presently utilize: Check those which apply)	
	Dug weil Drilled by a rig; if so, please identify company (name, add)	ress, and phone):
	Other (describe)	
	Date of last service 65 Company who serviced (name, address, and phone):	
	Please provide the following measurements of your well:	
	Please describe the casing material used in your well:	
ā	<u> </u>	Terra Cotta Other - Please Specify (if known)
t	o. Length (if known):	

e gold. George

HOME WELL SURVEY

Home	Owner'	s Name: Date:			
4.	Please	Please describe, if known, any screening material used in your well:			
	a.	Length of screen:			
	b.	Depth of screen in well:			
5.		rindicate, if known, the depth to the groundwater in your well (from the surface):			
6.	Please	ase indicate the composition of home plumbing (pipes) in your system:			
		PVC Galvanized Lead Lead Lead Lead			
7.	a.	describe the water pump used in your system: Location of the pump Inside the well (submersible pump); Depth in well: Outside the well (indicate location):			
	b.	Type of pump Branch (if known): Capacity (gailons per minute):			
	c.	Estimate hours of pump operation per day:			
	d.	Is storage tank used: Yes No Type (material) Capacity 9.0			
8.	a.	Do you regularly or have you ever added chemicals directly to your weil? (i.e., chlorine, clorox, etc.) Yes No If yes, date last added: Approximate amount added Compound (brand name):			

4/20/88

Home	e Owner's Name: Date:
	b. Please describe any type of water treatment you are currently using (check those which
	apply):
	Filtration Other (explain)
	Type:
	Water Softeners
	Indicate Brand:
) .	Please indicate any testing that has been done on your water:
	Date of testing:
	Name of individual(s) responsible for testing:
0.	Well Use: Other:
1.	Do you notice color, taste, or odor problems with well water? Yes No
	If yes, identify:
	Do you notice water supply problems? Yes No
	If yes, when: how often:
2.	Please indicate the type(s) of wastewater system used (check):
	Sewer Line
	Septic Tank Cesspool Drain Field
	Distance to Well
3.	We may be taking water samples from many area homes in the near future. If your well is
	chosen for sampling, would you be willing to allow our NUS representatives to sample your
	well? Sampling involves collecting water from one of your indoor or outdoor spigots.
	Yes, I will allow my well to be sampled.
	No, I will not allow my well to be sampled.

	Date:			
he time of day which would l	be convenient for us to sample.			
Afternoon	Evening			
In the space below, please furnish a rough sketch of your property, indicating the location of your well and on-lot wastewater system, if applicable. Also indicate the location of the spigot				
	Afternoon ease furnish a rough sketch	the time of day which would be convenient for us to sample. Afternoon Evening ease furnish a rough sketch of your property, indicating the local		

PLATE 1

EFA REGION III SUPERFUND DOCUMENT MANAGEMENT SYSTEM

DOCID#	404	788
PAGE #		

IMAGERY COVER SHEET UNSCANNABLE ITEM

Contact the CERCLA Records Center to view this document.

Linfield Industrial

SECTION BOX FOLDER
REPORT OR DOCUMENT TITLE FINAL SCRENING SHE INSpectron
DATE OF DOCUMENT Sept. 1, 1992
DESCRIPTION OF IMAGERY FOUR MILE RADIUS
MAP
NUMBER AND TYPE OF IMAGERY ITEM(S) DIMISTRACE 10190